7.在復平面內(nèi)復數(shù)$z=\frac{ai+1}{1-i}$對應的點在第一象限,則實數(shù)a的取值可以為( 。
A.0B.1C.-1D.2

分析 利用復數(shù)代數(shù)形式的乘除運算化簡,然后由實部大于0且虛部大于0求得a的范圍得答案.

解答 解:∵$z=\frac{ai+1}{1-i}$=$\frac{(1+ai)(1+i)}{(1-i)(1+i)}=\frac{1-a}{2}+\frac{a+1}{2}i$對應的點在第一象限,
∴$\left\{\begin{array}{l}{1-a>0}\\{a+1>0}\end{array}\right.$,即-1<a<1.
∴實數(shù)a的取值可以為0.
故選:A.

點評 本題考查復數(shù)的代數(shù)表示法及其幾何意義,考查復數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,CC1⊥底面ABC,AC⊥CB,點D是AB的中點.
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求證:AC1∥平面CDB1
(Ⅲ)設(shè)AB=2AA1,AC=BC,在線段A1B1上是否存在點M,使得BM⊥CB1?若存在,確定點M的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.用計算機隨機產(chǎn)生的有序二元數(shù)組(x,y)滿足-1<x<1,-1<y<1.
(1)求事件x≤$\frac{1}{2}$的概率;
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=b•ax,(其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24).
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=$\frac{1}{3}$(f(x))2-f(x)+1,x∈[0,2]的值域;
(3)若不等式($\frac{1}{a}$)${\;}^{x}+(\frac{1})^{x}+2m-3≥0$在x∈(-∞,1]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知tanx=$\sqrt{3}$,求x的取值集合;
(2)在單位圓中畫出滿足sinα=$\frac{1}{2}$的角α的終邊,并作出其正弦線、余弦線和正切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=mx2-x+lnx.
(1)當m=-1時,求f(x)的極大值;
(2)若在函數(shù)f(x)的定義域內(nèi)存在區(qū)間D,使得該函數(shù)在區(qū)間D上為減函數(shù),求實數(shù)m的取值范圍;
(3)當$0<m≤\frac{1}{2}$時,若曲線C:y=f(x)在點x=1處的切線l與曲線C有且只有一個公共點,求m的值或取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.數(shù)列{an}的首項al=1,且對任意n∈N*,an與an+1恰為方程x2-bnx+2n=0的兩個根.
(1)求數(shù)列(an}和數(shù)列{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)f(x)是定義在R上的函數(shù),且滿足f(x+2)=f(x+1)-f(x),如果f(1)=lg$\frac{3}{2}$,f(2)=lg15,則f(2016)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=logax,若不等式|f(x)|>1對任意x∈[2,+∞)恒成立,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{2}$)∪(1,2)B.(0,$\frac{1}{2}$)∪(2,+∞)C.($\frac{1}{2}$,1)∪(1,2)D.($\frac{1}{2}$,1)∪(2,+∞)

查看答案和解析>>

同步練習冊答案