函數(shù)y=2x2-lnx的單調(diào)增區(qū)間為
1
2
,+∞)
1
2
,+∞)
分析:因為函數(shù)的單調(diào)區(qū)間是定義域的子區(qū)間,所以先求函數(shù)的定義域,再求導(dǎo)數(shù),令導(dǎo)數(shù)大于0,解得x的范圍即為函數(shù)的單調(diào)增區(qū)間.
解答:解:函數(shù)y=2x2-lnx的定義域為(0,+∞)
對函數(shù)y=2x2-lnx求導(dǎo),得,y′=4x-
1
x
,
令y′>0,即4x-
1
x
>0,解得,x>
1
2

∴函數(shù)的單調(diào)增區(qū)間為(
1
2
,+∞)
故答案為(
1
2
,+∞)
點評:本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,易錯點是忘記求函數(shù)的定義域.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)單調(diào)區(qū)間:
(1)y=f(x)=x3-
1
2
x2-2x+5
;
(2)y=
x2-1
x
;
(3)y=
k2
x
+x
(k>0);
(4)y=2x2-lnα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(1,f'(1))是函數(shù)y=f(x)的導(dǎo)函數(shù)圖象上的一點,點B為(x,ln(x+1)),向量
a
=(1,1)
,令f(x)=
AB
a

(1)求函數(shù)y=f(x)的表達式;
(2)若x>0,證明:f(x)>
2x2+3x-10
2(x+2)
;
(3)若x∈[-1,1]時,不等式
1
2
x2≤f(x2)+m2-
9
2
m-3
都恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:全優(yōu)設(shè)計選修數(shù)學-2-2蘇教版 蘇教版 題型:044

(1)求函數(shù)y=x3-2x2+x的單調(diào)區(qū)間;

(2)求y=+cosx的單調(diào)區(qū)間;

(3)確定函數(shù)y=ln(2x-1)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A(1,f'(1))是函數(shù)y=f(x)的導(dǎo)函數(shù)圖象上的一點,點B為(x,ln(x+1)),向量
a
=(1,1)
,令f(x)=
AB
a

(1)求函數(shù)y=f(x)的表達式;
(2)若x>0,證明:f(x)>
2x2+3x-10
2(x+2)

(3)若x∈[-1,1]時,不等式
1
2
x2≤f(x2)+m2-
9
2
m-3
都恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復(fù)習(第11章 導(dǎo)數(shù)及其應(yīng)用):11.1 導(dǎo)數(shù)應(yīng)用的題型與方法(解析版) 題型:解答題

求下列函數(shù)單調(diào)區(qū)間:
(1)
(2);
(3)(k>0);
(4)y=2x2-lnα.

查看答案和解析>>

同步練習冊答案