【題目】(理)在長(zhǎng)方體中,,,,點(diǎn)在棱上移動(dòng).

1)探求多長(zhǎng)時(shí),直線與平面角;

2)點(diǎn)移動(dòng)為棱中點(diǎn)時(shí),求點(diǎn)到平面的距離.

【答案】1 2

【解析】

1)法一:先找出直線與平面所成角,再根據(jù)直角三角形解;法二:建立空間直角坐標(biāo)系,先求平面法向量,再利用向量數(shù)量積求向量夾角,最后解方程得結(jié)果;

2)建立空間直角坐標(biāo)系,先求平面法向量,再利用向量數(shù)量積求點(diǎn)面距.

解:(1)法一:長(zhǎng)方體中,因?yàn)辄c(diǎn)在棱上移動(dòng),

所以平面,從而為直線與平面所成的平面角,

中,.

法二:以為坐標(biāo)原點(diǎn),射線依次為軸軸,建立空間直角坐標(biāo)系,則點(diǎn),平面的法向量為,設(shè),得,由,得,故

2)以為坐標(biāo)原點(diǎn),射線依次為軸,建立空間直角坐標(biāo)系,則點(diǎn), ,

從而,

設(shè)平面的法向量為,由

,所以點(diǎn)到平面的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】符合以下性質(zhì)的函數(shù)稱為函數(shù):①定義域?yàn)?/span>,②是奇函數(shù),③(常數(shù)),④上單調(diào)遞增,⑤對(duì)任意一個(gè)小于的正數(shù),至少存在一個(gè)自變量,使.下列四個(gè)函數(shù)中,,,函數(shù)的個(gè)數(shù)為(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體中,EAB中點(diǎn),F在線段.給出下列判斷:①存在點(diǎn)F使得平面;②在平面內(nèi)總存在與平面平行的直線;③平面與平面ABCD所成的二面角(銳角)的大小與點(diǎn)F的位置無(wú)關(guān);④三棱錐的體積與點(diǎn)F的位置無(wú)關(guān).其中正確判斷的有(

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過(guò)點(diǎn)且與垂直,垂足為P.

1)當(dāng)時(shí),求l的極坐標(biāo)方程;

2)當(dāng)MC上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,右準(zhǔn)線的方程為分別為橢圓C的左、右焦點(diǎn),A,B分別為橢圓C的左、右頂點(diǎn).

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過(guò)作斜率為的直線l交橢圓CM,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),且,設(shè)直線AM,BN的斜率分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年遼寧省正式實(shí)施高考改革.新高考模式下,學(xué)生將根據(jù)自己的興趣、愛(ài)好、學(xué)科特長(zhǎng)和高校提供的“選考科目要求”進(jìn)行選課.這樣學(xué)生既能尊重自己愛(ài)好、特長(zhǎng)做好生涯規(guī)劃,又能發(fā)揮學(xué)科優(yōu)勢(shì),進(jìn)而在高考中獲得更好的成績(jī)和實(shí)現(xiàn)自己的理想.考改實(shí)施后,學(xué)生將在高二年級(jí)將面臨著的選課模式,其中“3”是指語(yǔ)、數(shù)、外三科必學(xué)內(nèi)容,“1”是指在物理和歷史中選擇一科學(xué)習(xí),“2”是指在化學(xué)、生物、地理、政治四科中任選兩科學(xué)習(xí).某校為了更好的了解學(xué)生對(duì)“1”的選課情況,學(xué)校抽取了部分學(xué)生對(duì)選課意愿進(jìn)行調(diào)查,依據(jù)調(diào)查結(jié)果制作出如下兩個(gè)等高堆積條形圖:根據(jù)這兩幅圖中的信息,下列哪個(gè)統(tǒng)計(jì)結(jié)論是不正確的(

A.樣本中的女生數(shù)量多于男生數(shù)量

B.樣本中有學(xué)物理意愿的學(xué)生數(shù)量多于有學(xué)歷史意愿的學(xué)生數(shù)量

C.樣本中的男生偏愛(ài)物理

D.樣本中的女生偏愛(ài)歷史

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市一中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并據(jù)此判斷甲乙兩位同學(xué)的成績(jī)誰(shuí)更好?

2)將同學(xué)乙的成績(jī)的頻率分布直方圖補(bǔ)充完整;

3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),設(shè)選出的2個(gè)成績(jī)中含甲的成績(jī)的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線

(Ⅰ)求的方程;

(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)時(shí),求

查看答案和解析>>

同步練習(xí)冊(cè)答案