【題目】已知 =(1,2), =(﹣3,2),當(dāng)k為何值時(shí),
(1)k 與 垂直?
(2)k 與 夾角為鈍角?
【答案】
(1)解:∵ =(1,2), =(﹣3,2),
∴k =k(1,2)+(﹣3,2)=(k﹣3,2k+2),
=(1,2)﹣3(﹣3,2)=(10,﹣4).
由(k )⊥( ),得10(k﹣3)﹣4(2k+2)=0,即k=19;
(2)解:若k 與 夾角為鈍角,
則10(k﹣3)﹣4(2k+2)<0,即k<19,
又(k )∥( ),得﹣4(k﹣3)﹣10(2k+2)=0,解得k=﹣ .
此時(shí)兩向量方向相反,
∴k<19且k .
【解析】由已知向量的坐標(biāo)求得k 與 的坐標(biāo).(1)直接由向量垂直的坐標(biāo)運(yùn)算得答案;(2)由數(shù)量積小于0求出k的范圍,去掉共線反向的k值得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位學(xué)生參加某項(xiàng)競(jìng)賽培訓(xùn),在培訓(xùn)期間,他們參加的5項(xiàng)預(yù)賽成績(jī)的莖葉圖記錄如下:
(1)從甲、乙兩人的成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率;
(2)現(xiàn)要從中選派一人參加該項(xiàng)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知a= ,cosA= ,B=A+
(1)求b的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足an=2an-1-2n+5,(n∈N且n≥2),a1=1,
(I)若bn=an-2n+1,求證數(shù)列{bn}(n∈N*)是常數(shù)列,并求{an}的通項(xiàng);
(II)若Sn是數(shù)列{an}的前n項(xiàng)和,又cn=(-1)nSn,且{Cn}的前n項(xiàng)和Tn>tn2在n∈N*時(shí)恒成立,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式:13+23=32 , 13+23+33=62 , 13+23+33+43=102 , …,根據(jù)上述規(guī)律,得到一般結(jié)論是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】的內(nèi)角的對(duì)邊分別為,且.
(1)證明: 成等比數(shù)列;
(2)若角的平分線交于點(diǎn),且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, ,其中是自然常數(shù), .
(1)當(dāng)時(shí),求的極值,并證明恒成立;
(2)是否存在實(shí)數(shù),使的最小值為 ?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)已知a,b都是正數(shù),求證:a5+b5≥a2b3+a3b2 .
(2)已知a>0,證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com