分析 利用兩角和的正切函數(shù),求出正切函數(shù)值,然后求解即可.
解答 解:tan(θ+$\frac{π}{4}$)=$\frac{1}{2}$,
$\frac{1+tanθ}{1-tanθ}$=$\frac{1}{2}$,可得tanθ=-$\frac{1}{3}$.
sin2θ=$\frac{2tanθ}{{tan}^{2}θ+1}$=$\frac{-\frac{2}{3}}{\frac{1}{9}+1}$=$-\frac{3}{5}$.
故答案為:$-\frac{3}{5}$;
點評 本題考查兩角和的正切函數(shù)以及三角函數(shù)的化簡求值,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1.5) | B. | (1.5,2) | C. | (2,2.5) | D. | (2.5,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$ | B. | $[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$ | C. | $[-\frac{1}{2},\frac{1}{2}]$ | D. | $[-\frac{{\sqrt{2}}}{2},\frac{1}{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1≤x<2} | B. | {x|0<x<1} | C. | {x|x≤0} | D. | {x|x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com