11.求函數(shù)y=2sin(2x-$\frac{π}{3}$)($\frac{π}{3}$≤x≤$\frac{5π}{6}$)的值域.

分析 由條件利用正弦函數(shù)的定義域和值域,求得函數(shù)y的值域.

解答 解:∵$\frac{π}{3}$≤x≤$\frac{5π}{6}$,∴2x-$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],∴函數(shù)y=2sin(2x-$\frac{π}{3}$)∈[-$\sqrt{3}$,2],
故函數(shù)y的值域?yàn)閇-$\sqrt{3}$,2].

點(diǎn)評 本題主要考查正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,A,B,C是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上的三個(gè)點(diǎn),AB經(jīng)過原點(diǎn)O,AC經(jīng)過右焦點(diǎn)F,若BF⊥AC且|BF|=|CF|,則該雙曲線的離心率是$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)$f(x)=({m^2}-m-1){x^{{m^2}-2m-3}}$是冪函數(shù),且f(x)在(0,+∞)上為減函數(shù),${(a+1)^{\frac{1}{m}}}<{(3-2a)^{\frac{1}{m}}}$,則實(shí)數(shù)a的取值范圍為[-1,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C的方程為(x-1)2+(y-2)2=9,過點(diǎn)P(-2,4)作圓C的切線PA、PB,A、B為切點(diǎn).
(1)求切線PA、PB的方程;
(2)求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出a的值為( 。
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$(x>-1),設(shè)F(x)=f(x-4),且函數(shù)F(x)的零點(diǎn)在區(qū)間[a-1,a](a∈Z)內(nèi),則${(x+\frac{a}{2})}^{a}$的展開式中x3的系數(shù)為(  )
A.20B.15C.12D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個(gè)球內(nèi)有一內(nèi)接長方體,其長、寬、高分別為5,4,3,則球的半徑為(  )
A.5$\sqrt{2}$B.2$\sqrt{5}$C.$\sqrt{5}$D.$\frac{5\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等比數(shù)列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)記bn=log2$\frac{6}{{a}_{2n+1}}$,且{bn}為遞增數(shù)列,若Cn=$\frac{1}{{_{n}b}_{n+1}}$,求證:C1+C2+C3+…Cn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=tan$\frac{x}{a}$(a∈N*)的最小正周期是aπ.

查看答案和解析>>

同步練習(xí)冊答案