已知α是第三象限角,且f(α)=
sin(
π
2
-α)tan(π-α)cos(
2
-α)
tan(-α)sin(π+α)
,
(1)化簡f(α);
(2)若cos(
2
-α)=
1
5
,求f(α)的值.
考點:運用誘導(dǎo)公式化簡求值,同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:(1)f(α)解析式利用誘導(dǎo)公式化簡,整理即可得到結(jié)果;
(2)已知等式左邊利用誘導(dǎo)公式化簡求出sinα的值,根據(jù)α為第三象限角,利用同角三角函數(shù)間基本關(guān)系求出cosα的值,代入計算即可求出f(α)的值.
解答: 解:(1)f(α)=
cosα(-tanα)sinα
-tanα(-sinα)
=-cosα;
(2)∵cos(
2
-α)=-sinα=
1
5
,
∴sinα=-
1
5
,
∵α為第三象限角,
∴cosα=-
2
6
5

則f(α)=-cosα=
2
6
5
點評:此題考查了運用誘導(dǎo)公式化簡求值,以及同角三角函數(shù)基本關(guān)系的運用,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,當(dāng)n≥2時,an-an-1=n+1,則a99=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:(1)
1-2sinxcosx
cos2x-sin2x
=
1-tanx
1+tanx

(2)tan2α-sin2α=tan2α•sin2α
(3)(cosβ-1)2+sin2β=2-2cosβ
(4)sin4x+cos4x=1-2sin2xcos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=cosx的圖象,只需將函數(shù)y=sin(2x+
π
4
)的圖象上所有的點的( 。
A、橫坐標縮短到原來的
1
2
倍(縱坐標不變),再向左平行移動
π
8
個單位長度
B、橫坐標縮短到原來的
1
2
倍(縱坐標不變),再向右平行移動
π
4
個單位長度
C、橫坐標伸長到原來的2倍(縱坐標不變),再向左平行移動
π
4
個單位長度
D、橫坐標伸長到原來的2倍(縱坐標不變),再向右平行移動
π
8
個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求sin
18
cos
9
-sin
π
9
sin
9
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程|x(x+3)|=x-b有四個不等的實數(shù)根,則實數(shù)b的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ,cosθ是方程x2-ax+a=0兩根(θ∈(0,π)),求下列值.
(1)sinθ,cosθ;
(2)sinθ-cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)f(x)=xα過點(2,
1
2
)
,則f(x)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD的頂點B、D、P分別在空間直角坐標系的坐標軸上,頂點A與原點重合;底面ABCD中,AB⊥BC,且BC=PA=3,AD=y;三棱錐P-ABC的體積為5.
(Ⅰ)求面PDC的一個法向量(用y表示);
(Ⅱ)當(dāng)二面角C-PD-A為直二面角時,求PB與面PDC所成的角的正弦值;
(Ⅲ)當(dāng)二面角C-PD-A的余弦值為-
3
7
時,試探求AD的長.

查看答案和解析>>

同步練習(xí)冊答案