【題目】平面直角坐標(biāo)系中,動(dòng)圓與圓外切,且與直線相切,記圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)過(guò)定點(diǎn)為非零常數(shù))的動(dòng)直線與曲線交于兩點(diǎn),問(wèn):在曲線上是否存在點(diǎn)(與兩點(diǎn)相異),當(dāng)直線的斜率存在時(shí),直線的斜率之和為定值.若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)見(jiàn)解析.

【解析】試題分析】(1)依據(jù)題設(shè)條件運(yùn)用兩圓位置關(guān)系建立方程求解;(2)依據(jù)題設(shè)條件借助直線的斜率公式及直線與拋物線的位置關(guān)系進(jìn)行分析求解:

(1)不妨設(shè)動(dòng)圓的圓心為,

易知圓的圓心為,半徑為,

∵動(dòng)圓與圓外切,且與直線相切,

∴圓心在直線的右側(cè),且點(diǎn)到點(diǎn)的距離比點(diǎn)到直線的距離大,

,且,

,兩邊平方并化簡(jiǎn)整理得,

即曲線的軌跡方程為

(2)假設(shè)在曲線上存在點(diǎn)滿(mǎn)足題設(shè)條件,不妨設(shè),

,

(*)

顯然動(dòng)直線的斜率非零,故可設(shè)其方程為

聯(lián)立,整理得,

,且

代入(*)式得,

顯然,于是(**),

欲使(**)式對(duì)任意成立,∴,

顯然,否則由可知,

從而可得,這與為非零常數(shù)矛盾,

,∴,

于是,當(dāng)時(shí),不存在滿(mǎn)足條件的,即不存在滿(mǎn)足題設(shè)條件的點(diǎn)

當(dāng)時(shí), ,

將此代入拋物線的方程可求得滿(mǎn)足條件的點(diǎn)坐標(biāo)為

下面說(shuō)明此時(shí)直線的斜率必定存在,

,∴,∴,

顯然,∴,且,∴直線的斜率必定存在,

綜上所述,存在點(diǎn)(與兩點(diǎn)相異),其坐標(biāo)為,或,使得直線的斜率之和為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,,且對(duì)任意正整數(shù)n,點(diǎn)(,)在直線上.

(1)求數(shù)列的通項(xiàng)公式;

(2)是否存在實(shí)數(shù)λ,使得數(shù)列{ }為等差數(shù)列?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.在(0, )內(nèi),sinx>cosx
B.函數(shù)y=2sin(x+ )的圖象的一條對(duì)稱(chēng)軸是x= π
C.函數(shù)y= 的最大值為π
D.函數(shù)y=sin2x的圖象可以由函數(shù)y=sin(2x﹣ )的圖象向右平移 個(gè)單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角△ABC的面積等于3 ,且AB=3,AC=4.
(1)求sin( +A)的值;
(2)求cos(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:三棱柱中,底面是正三角形,側(cè)棱, 是棱的中點(diǎn),點(diǎn)在棱上,且

)求證: 平面

)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù), ),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(Ⅰ)討論直線與圓的公共點(diǎn)個(gè)數(shù);

(Ⅱ)過(guò)極點(diǎn)作直線的垂線,垂足為,求點(diǎn)的軌跡與圓相交所得弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,中點(diǎn),交于點(diǎn)

(1)求證:平面

(2)求證:平面

(3)求三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)環(huán)境保護(hù)部《環(huán)境空氣質(zhì)量指數(shù)()技術(shù)規(guī)定》,空氣質(zhì)量指數(shù)()在201—300之間為重度污染;在301—500之間為嚴(yán)重污染.依據(jù)空氣質(zhì)量預(yù)報(bào),同時(shí)綜合考慮空氣污染程度和持續(xù)時(shí)間,將空氣重污染分4個(gè)預(yù)警級(jí)別,由輕到重依次為預(yù)警四級(jí)、預(yù)警三級(jí)、預(yù)警二級(jí)、預(yù)警一級(jí),分別用藍(lán)、黃、橙、紅顏色標(biāo)示,預(yù)警一級(jí)(紅色)為最高級(jí)別.(一)預(yù)警四級(jí)(藍(lán)色):預(yù)測(cè)未來(lái)1天出現(xiàn)重度污染;(二)預(yù)警三級(jí)(黃色):預(yù)測(cè)未來(lái)1天出現(xiàn)嚴(yán)重污染或持續(xù)3天出現(xiàn)重度污染;(三)預(yù)警二級(jí)(橙色);預(yù)測(cè)未來(lái)持續(xù)3天交替出現(xiàn)重度污染或嚴(yán)重污染;(四)預(yù)警一級(jí)(紅色);預(yù)測(cè)未來(lái)持續(xù)3天出現(xiàn)嚴(yán)重污染.

某城市空氣質(zhì)量監(jiān)測(cè)部門(mén)對(duì)近300天空氣中濃度進(jìn)行統(tǒng)計(jì),得出這300天濃度的頻率分布直方圖如圖,將濃度落入各組的頻率視為概率,并假設(shè)每天的濃度相互獨(dú)立.

(1)求當(dāng)?shù)乇O(jiān)測(cè)部門(mén)發(fā)布顏色預(yù)警的概率;

(2)據(jù)當(dāng)?shù)乇O(jiān)測(cè)站數(shù)據(jù)顯示未來(lái)4天將出現(xiàn)3天嚴(yán)重污染,求監(jiān)測(cè)部門(mén)發(fā)布紅色預(yù)警的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案