8.已知y=ax2+bx(a<0)通過點(1,2),且其圖象與y=-x2+2x的圖象有二個交點(如圖所示).
(Ⅰ)求y=ax2+bx與y=-x2+2x所圍成的面積S與a的函數(shù)關(guān)系;
(Ⅱ)當(dāng)a,b為何值時,S取得最小值.

分析 (Ⅰ)有已知可得其中一個交點是原點,把另一個交點表示出來,再利用定積分把面積表示處理即可;
(Ⅱ)結(jié)合(I)利用導(dǎo)數(shù)求解.

解答 解:(Ⅰ)由y=ax2+bx通過點(1,2)可得a+b=2
即b=2-a,由$\left\{\begin{array}{l}y=a{x^2}+bx\\ y=-{x^2}+2x\end{array}\right.$,解得${x_1}=\frac{a}{1+a}$
則y=ax2+bx與y=-x2+2x所圍成的面積S與a的函數(shù)關(guān)系為$S=\int_0^{x_1}{[{(a{x^2}+bx)-(-{x^2}+2x)}]}dx=-\frac{a^3}{{6{{(1+a)}^2}}}$
(Ⅱ)由$S=-\frac{a^3}{{6{{(1+a)}^2}}}$,得$S'=-\frac{1}{6}•\frac{{{a^2}(a+1)(a+3)}}{{{{(1+a)}^4}}}$,
由S'=0得a=-3,a=-1,
當(dāng)a=-1時,兩曲線只有一個交點,不合題意.
當(dāng)a<-3,S'<0,當(dāng)a>-3S'>0,
所以當(dāng)a=-3時,S取得極小值,即最小值,此時b=2-a=5,${S_{min}}=\frac{9}{8}$.

點評 本題主要考查二次函數(shù)以及定積分,導(dǎo)數(shù)的應(yīng)用,屬于中等題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一個正方體的平面展開圖及該正方體的直觀圖如圖所示,在正方體中,設(shè)BC的中點為M,GH的中點為N.
(1)請將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點處(不需要說明理由);
(2)求證:直線MN∥平面BDH;
(3)求二面角B-DH-C的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.正四棱柱ABCD-A1B1C1D1中,AB=$\sqrt{2}$,AA1=2,設(shè)四棱柱的外接球的球心為O,動點P在正方形ABCD的邊長,射線OP交球O的表面點M,現(xiàn)點P從點A出發(fā),沿著A→B→C→D→A運動一次,則點M經(jīng)過的路徑長為$\frac{4\sqrt{2}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.己知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow$=(cosx,sinx).
(Ⅰ)若|$\overrightarrow{a}$-$\overrightarrow$|=2且x∈[$\frac{π}{2}$,π],求x的值
(Ⅱ)設(shè)函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$,若方程f(x)-k=0在x∈[$\frac{π}{2}$,π]上恰有兩個相異的實根α、β,
(1)寫出實數(shù)k的取值范圍(不必說明理由)
(2)求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)y=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<e}\\{alnx,x≥e}\end{array}\right.$的圖象上存在兩點P,Q,使得△POQ是以O(shè)為直角頂點的直角三角形(其中O為坐標(biāo)原點),且斜邊的中點恰好在y軸上,則實數(shù)a的取值范圍是( 。
A.(-1,$\frac{1}{e}$)B.(0,$\frac{1}{e+1}$]C.(0,$\frac{1}{e}$]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在棱長為2的正四面體ABCD中,G為△BCD的重心,M為線段AG的中點,則三棱錐M-BCD外接球的表面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow a$=(-1,3),$\overrightarrow b$=(1,k),若$\overrightarrow a$⊥$\overrightarrow b$,則實數(shù)k的值是( 。
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部數(shù)學(xué)平均分分別是a、b,則這兩個級部的數(shù)學(xué)平均分為$\frac{na}{m}$+$\frac{mb}{n}$;
③某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從001到800進(jìn)行編號,已知從497--512這16個數(shù)中取得的學(xué)生編號是503,則初始在第1小組00l~016中隨機(jī)抽到的學(xué)生編號是007.
其中命題正確的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題p:集合A={x|ax2-x+1-a=0}中只含有一個元素的充要條件是a=$\frac{1}{2}$;命題q:不等式|x2-2x-15|>x2-2x-15的解集為{x|-3<x<5},則( 。
A.“p∨q”為假B.“p∧q”為真C.p真q假D.p假q真

查看答案和解析>>

同步練習(xí)冊答案