分析 (Ⅰ)先求得$\overrightarrow{a}$-$\overrightarrow$,根據向量的模長公式求得即可求得k的取值范圍,由x∈[$\frac{π}{2}$,π],即可求得k的值;
(Ⅱ)求得f(x)=$\overrightarrow{a}$$•\overrightarrow$的解析式,根據三角二倍角公式及輔助角公式,根據三角函數圖象,將方程f(x)-k=0在x∈[$\frac{π}{2}$,π]上恰有兩個相異的實根α、β轉化成y=k-$\frac{1}{2}$,與y=sin(2x-$\frac{π}{6}$)在[$\frac{π}{2}$,π],上由兩個不同的交點,即可求得k的取值范圍;根據函數圖象,α和β關于x=$\frac{5π}{6}$對稱,即可求得α+β的值.
解答 解:(Ⅰ)$\overrightarrow{a}$-$\overrightarrow$=($\sqrt{3}$sinx-cosx,0)=(2sin(x-$\frac{π}{6}$),0),
|$\overrightarrow{a}$-$\overrightarrow$|=2sin(x-$\frac{π}{6}$)=2,
∴x-$\frac{π}{6}$=$\frac{π}{2}$+2kπ,
由x∈[$\frac{π}{2}$,π],x=$\frac{2π}{3}$;
(Ⅱ)(1)f(x)=$\overrightarrow{a}$$•\overrightarrow$=$\sqrt{3}$sinxcosx+sin2x,
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{1}{2}$,
=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
f(x)-k=0?sin(2x-$\frac{π}{6}$)=k-$\frac{1}{2}$,其中x∈[$\frac{π}{2}$,π],
由三角函數圖象可知:
sin(2x-$\frac{π}{6}$)∈(-1,-$\frac{1}{2}$),
即k-$\frac{1}{2}$∈(-1,-$\frac{1}{2}$),即k∈(-$\frac{1}{2}$,0),y=k-$\frac{1}{2}$與y=sin(2x-$\frac{π}{6}$)在[$\frac{π}{2}$,π]上由兩個不同的交點,
由上圖可知:α和β關于x=$\frac{5π}{6}$對稱,
∴α+β=2×$\frac{5π}{6}$=$\frac{5π}{3}$,
故α+β=$\frac{5π}{3}$.
點評 本題考查向量與三角函數綜合應用,考查正弦函數圖象及性質,考查分析問題及解決問題能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | a≥3 | B. | a≤-3 | C. | a<-3 | D. | a>3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | p為真 | B. | ¬q為假 | C. | p∧q為真 | D. | p∨q為假 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 11 | B. | 10 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com