19.已知等比數(shù)列{an}中,a2=4,a5=32.
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和Sn
(2)設(shè)Tn=log2a1+log2a2+…+log2an,求Tn

分析 (1)設(shè)等比數(shù)列{an}的公比為q,運(yùn)用等比數(shù)列的通項(xiàng)公式,解方程即可得到首項(xiàng)和公比,進(jìn)而得到所求通項(xiàng)和求和;
(2)運(yùn)用對數(shù)的運(yùn)算性質(zhì)和等差數(shù)列的求和公式,即可得到所求值.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,
由題意可得a1q=4,a1q4=32,
解得a1=q=2,
則an=2n,Sn=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2;
(2)Tn=log2a1+log2a2+…+log2an
=log22+log24+…+log22n
=1+2+…+n=$\frac{1}{2}$n(n+1).

點(diǎn)評 本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查對數(shù)的運(yùn)算性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)四邊形ABCD為平行四邊形,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AD}$|=4,若點(diǎn)M、N滿足$\overrightarrow{BM}$=3$\overrightarrow{MC}$,$\overrightarrow{DN}$=2$\overrightarrow{NC}$,則$\overrightarrow{AM}$•$\overrightarrow{NM}$=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知直線m:x+y-2=0與圓C:(x-1)2+(y-2)2=1相交于A,B兩點(diǎn),則弦長|AB|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{|1-x^2|}{1-|x|}$的圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.△ABC中,a、b、c分別為∠A、∠B、∠C的對邊.如果a、b、c成等比數(shù)列,∠B=30°,△ABC的面積為$\frac{3}{2}$,那么b=( 。
A.$\frac{1+\sqrt{3}}{2}$B.$\sqrt{6}$C.$\frac{2+\sqrt{3}}{2}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≤x}\\{2x+y-9≤0}\end{array}\right.$時(shí),所表示的平面區(qū)域?yàn)镈,則z=x+3y的最大值等于12,若直線y=a(x+1)與區(qū)域D有公共點(diǎn),則a的取值范圍是a$≤\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)$y={log_{\frac{1}{2}}}(-{x^2}+5x-6)$的單調(diào)增區(qū)間為$[\frac{5}{2},3)$,值域?yàn)閇2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x6+1,當(dāng)x=x0時(shí),用秦九韶算法求f(x0)的值,需要進(jìn)行乘方、乘法、加法的次數(shù)分別為( 。
A.21,6,2B.7,1,2C.0,1,2D.0,6,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.0<tanx<1解集為{x|kπ<x<$\frac{π}{4}$+kπ,k∈Z}.

查看答案和解析>>

同步練習(xí)冊答案