【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下的資料:
該興趣小組確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選用的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若有線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)(2)中所得線性回歸方程是否是理想?
參考公式:
【答案】(1);(2);(3)該小組所得線性回歸方程是理想的.
【解析】試題分析:(1)試驗(yàn)發(fā)生包含的事件是從組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,滿足條件的事件是抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有種,根據(jù)古典概型的概率公式得到結(jié)果;(2)根據(jù)所給的數(shù)據(jù),求出的平均數(shù),根據(jù)公式求出系數(shù),把和的平均數(shù),代入回歸方程求出的值,即可得到線性回歸方程.
試題解析:(1)由題意知本題是一個(gè)古典概型,設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件,試驗(yàn)發(fā)生包含的事件是從組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的其中,滿足條件的事件是抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有種, ;(2)由數(shù)據(jù)求得,由公式求得 ,再由求得 關(guān)于線性回歸方程為 .
【方法點(diǎn)晴】本題主要考查古典概型概率公式和線性回歸方程求法與應(yīng)用,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫(huà)出散點(diǎn)圖,確定兩個(gè)變量具有線性相關(guān)關(guān)系;②計(jì)算的值;③計(jì)算回歸系數(shù);④寫(xiě)出回歸直線方程為; 回歸直線過(guò)樣本點(diǎn)中心是一條重要性質(zhì),利用線性回歸方程可以估計(jì)總體,幫助我們分析兩個(gè)變量的變化趨勢(shì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用隨機(jī)模擬的方法可以估計(jì)圖中由曲線與兩直線x=2及y=0所圍成的陰影部分的面積S:①先產(chǎn)生兩組0~1的均勻隨機(jī)數(shù),a=RAND(。,b=RAND(。;② 做變換,令x=2a,y=2b;③產(chǎn)生N個(gè)點(diǎn)(x,y),并統(tǒng)計(jì)落在陰影內(nèi)的點(diǎn)(x,y)的個(gè)數(shù),已知某同學(xué)用計(jì)算機(jī)做模擬試驗(yàn)結(jié)果,選取了以下20組數(shù)據(jù)(如圖所示),則據(jù)此可估計(jì)S的值為____.
x | y | y-0.5*x*x |
0.441414481 | 1.849136261 | 1.751712889 |
1.836710045 | 0.508951247 | -1.177800647 |
1.389538592 | 0.999398689 | 0.033989941 |
0.745446842 | 1.542498362 | 1.264652865 |
0.981548556 | 1.928476536 | 1.446757752 |
1.87036015 | 1.287100762 | -0.462022784 |
1.20252176 | 1.271691664 | 0.548662372 |
1.931929493 | 0.920911487 | -0.945264297 |
0.450507939 | 1.561663263 | 1.460184562 |
1.356178263 | 1.856227093 | 0.936617353 |
0.408489063 | 1.564834147 | 1.481402489 |
0.163980707 | 0.135034106 | 0.121589269 |
1.868152447 | 0.350326824 | -1.394669959 |
0.252753469 | 1.287326597 | 1.255384439 |
1.253648606 | 1.872701968 | 1.086884555 |
0.679831952 | 0.140283887 | -0.090801854 |
1.544339084 | 0.804655288 | -0.387836316 |
1.563089931 | 0.872844524 | -0.348780542 |
1.17458008 | 0.867440167 | 0.177620985 |
1.057219794 | 1.791271879 | 1.232415032 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)定點(diǎn)斜率為的直線與橢圓交于兩點(diǎn),若,求斜率的值;
(Ⅲ)若(Ⅱ)中的直線與交于兩點(diǎn),設(shè)點(diǎn)在上,試探究使的面積為的點(diǎn)共有幾個(gè)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,DB平分,為的中點(diǎn),
(1)證明: ;
(2)證明:;
(3)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=aln(x2+1)+bx存在兩個(gè)極值點(diǎn)x1 , x2 .
(1)求證:|x1+x2|>2;
(2)若實(shí)數(shù)λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠在政府的幫扶下,準(zhǔn)備轉(zhuǎn)型生產(chǎn)一種特殊機(jī)器,生產(chǎn)需要投入固定成本萬(wàn)元,生產(chǎn)與銷(xiāo)售均已百臺(tái)計(jì)數(shù),且每生產(chǎn)臺(tái),還需增加可變成本萬(wàn)元,若市場(chǎng)對(duì)該產(chǎn)品的年需求量為臺(tái),每生產(chǎn)百臺(tái)的實(shí)際銷(xiāo)售收入近似滿足函數(shù).
()試寫(xiě)出第一年的銷(xiāo)售利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(單位:百臺(tái),,)的函數(shù)關(guān)系式:(說(shuō)明:銷(xiāo)售利潤(rùn)=實(shí)際銷(xiāo)售收入-成本)
()因技術(shù)等原因,第一年的年生產(chǎn)量不能超過(guò)臺(tái),若第一年的年支出費(fèi)用(萬(wàn)元)與年產(chǎn)量(百臺(tái))的關(guān)系滿足,問(wèn)年產(chǎn)量為多少百臺(tái)時(shí),工廠所得純利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了至月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 () | ||||||
就診人數(shù)(個(gè)) |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的組數(shù)據(jù)恰好是相鄰兩月的概率;
(2)若選取的是1月與月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?
參考數(shù)據(jù),
(參考公式: ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂(lè)廣場(chǎng).已知AD//BC, 百米, 百米,廣場(chǎng)入口P在AB上,且,根據(jù)規(guī)劃,過(guò)點(diǎn)P鋪設(shè)兩條相互垂直的筆直小路PM,PN(小路的寬度不計(jì)),點(diǎn)M,N分別在邊AD,BC上(包含端點(diǎn)),區(qū)域擬建為跳舞健身廣場(chǎng), 區(qū)域擬建為兒童樂(lè)園,其它區(qū)域鋪設(shè)綠化草坪,設(shè).
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PNM,PN進(jìn)行不同風(fēng)格的美化,PM小路的美化費(fèi)用為每百米1萬(wàn)元,PN小路的美化費(fèi)用為每百米2萬(wàn)元,試確定M,N的位置,使得小路PM,PN的美化總費(fèi)用最低,并求出最小費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,且對(duì)任意,都有:
①;②.
以下三個(gè)結(jié)論:①;②;③.
其中正確的個(gè)數(shù)為( ).
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com