18.借助單位圓求sinx=$\frac{1}{2}$時,x的值?

分析 如圖所示,取MP=$\frac{1}{2}$,則sinx=MP=$\frac{1}{2}$,即可得出結(jié)論.

解答 解:如圖所示,取MP=$\frac{1}{2}$,則sinx=MP=$\frac{1}{2}$,
∴x=30°+k•360°或x=150°+k•360°,k∈Z.

點評 本題考查三角方程,考查單位圓的運用,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.5<k<6是方程為$\frac{x^2}{k-5}+\frac{y^2}{6-k}=1$的曲線表示橢圓時的必要不充分條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.平面向量$\overrightarrow a$、$\overrightarrow b$滿足$(\overrightarrow a+\overrightarrow b)(2\overrightarrow a-\overrightarrow b)=-4$,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=4,則$\overrightarrow a$與$\overrightarrow b$的夾角等于$\frac{π}{3}$,$\overrightarrow a$在$\overrightarrow b$上的投影為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=loga(4-ax)在(-2,2)上是減函數(shù),則a的取值范圍是( 。
A.(0,2)B.(1,2)C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.平面上三個力$\overrightarrow{{F}_{1}}$,$\overrightarrow{{F}_{2}}$,$\overrightarrow{{F}_{3}}$作用于一點且處于平衡狀態(tài),已知|$\overrightarrow{{F}_{1}}$|=1N,|$\overrightarrow{{F}_{2}}$|=2N,$\overrightarrow{{F}_{1}}$,$\overrightarrow{{F}_{2}}$成120°角,則力$\overrightarrow{{F}_{1}}$與$\overrightarrow{{F}_{3}}$所成的角為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.點P與定點F(2,0)的距離和它到定直線x=$\frac{1}{2}$的距離的比是2:1,求點P的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)f(x)對任意的實數(shù)x,均有f(x-1)+f(x+1)>2f(x),則稱函數(shù)f(x)具有性質(zhì)P.
(1)判斷函數(shù)y=x3是否具有性質(zhì)P,并說明理由;
(2)求證:函數(shù)y=ax(a>0且a≠1)具有性質(zhì)P;
(3)若函數(shù)f(x)具有性質(zhì)P,且f(0)=f(n)=0(n>2,n∈N*).
求證:對任意i∈{1,2,3,…,n-1}都有f(i)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}1+{log_2}(2-x),x<1\\{2^{x-1}},x≥1\end{array}\right.$,f(-6)+f(log214)=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.下列方程是否表示橢圓,若是,指出該橢圓的焦點坐標(biāo).
(1)2x2+y2=1;
(2)$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=4;
(3)2x2+3y2=6;
(4)$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{2}$=1.

查看答案和解析>>

同步練習(xí)冊答案