在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y = -3上,M點滿足, ,M點的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動點,l為C在P點處得切線,求O點到l距離的最小值。
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線的兩個焦點為、點在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知A、B為拋物線C:y2 = 4x上的兩個動點,點A在第一象限,點B在第四象限l1、l2分別過點A、B且與拋物線C相切,P為l1、l2的交點.
(1)若直線AB過拋物線C的焦點F,求證:動點P在一條定直線上,并求此直線方程;
(2)設C、D為直線l1、l2與直線x = 4的交點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個焦點恰好與拋物線的焦點重合.
求橢圓的方程;
設橢圓的上頂點為,過點作橢圓的兩條動弦,若直線斜率之積為,直線是否一定經(jīng)過一定點?若經(jīng)過,求出該定點坐標;若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系xOy中,已知圓心在第二象限、半徑為2的圓C與直線y=x相切于坐標原點O,橢圓+=1與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程.
(2)試探究圓C上是否存在異于原點的點Q,使Q到橢圓的右焦點F的距離等于線段OF的長,若存在,請求出Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓的離心率,.
(1)求橢圓C的方程;
(2)如圖,是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DP交軸于點N,直線AD交BP于點M。設BP的斜率為,MN的斜率為.證明:為定值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為.
(1)求橢圓C的方程;
(2)設A,B是橢圓C上的兩點,△AOB的面積為.若A、B兩點關于x軸對稱,E為線段AB的中點,射線OE交橢圓C于點P.如果=t,求實數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知圓E ,點,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡的方程;
(2)點,,點G是軌跡上的一個動點,直線AG與直線相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知頂點為原點的拋物線的焦點與橢圓的右焦點重合,與在第一和第四象限的交點分別為.
(1)若是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com