在直角坐標(biāo)系xOy中,已知圓心在第二象限、半徑為2的圓C與直線y=x相切于坐標(biāo)原點(diǎn)O,橢圓+=1與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程.
(2)試探究圓C上是否存在異于原點(diǎn)的點(diǎn)Q,使Q到橢圓的右焦點(diǎn)F的距離等于線段OF的長(zhǎng),若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(1)(x+2)2+(y-2)2=8.   (2)存在,Q

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程及其離心率;
(2)過(guò)橢圓右焦點(diǎn)的直線(不經(jīng)過(guò)點(diǎn))與橢圓交于兩點(diǎn),當(dāng)的平分線為 時(shí),求直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的方程為,直線的方程為,點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)在拋物線上.
(1)求拋物線的方程;
(2)已知,求過(guò)點(diǎn)及拋物線與軸兩個(gè)交點(diǎn)的圓的方程;
(3)已知,點(diǎn)是拋物線的焦點(diǎn),是拋物線上的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2011•山東)在平面直角坐標(biāo)系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過(guò)原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=﹣3于點(diǎn)D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求證:直線l過(guò)定點(diǎn);
(ii)試問(wèn)點(diǎn)B,G能否關(guān)于x軸對(duì)稱(chēng)?若能,求出此時(shí)△ABG的外接圓方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定點(diǎn),過(guò)點(diǎn)F且與直線相切的動(dòng)圓圓心為點(diǎn)M,記點(diǎn)M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若點(diǎn)A的坐標(biāo)為,與曲線E相交于B,C兩點(diǎn),直線AB,AC分別交直線于點(diǎn)S,T.試判斷以線段ST為直徑的圓是否恒過(guò)兩個(gè)定點(diǎn)?若是,求這兩個(gè)定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y = -3上,M點(diǎn)滿(mǎn)足, ,M點(diǎn)的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動(dòng)點(diǎn),l為C在P點(diǎn)處得切線,求O點(diǎn)到l距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013•浙江)已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)F作直線交拋物線于A、B兩點(diǎn).若直線OA、OB分別交直線l:y=x﹣2于M、N兩點(diǎn),求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

長(zhǎng)方形中,.以的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的直角坐標(biāo)系.

(1) 求以、為焦點(diǎn),且過(guò)、兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2) 過(guò)點(diǎn)的直線交(1)中橢圓于兩點(diǎn),是否存在直線,使得以線段為直徑的圓恰好過(guò)坐標(biāo)原點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點(diǎn)P 為橢圓上一點(diǎn),直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過(guò)橢圓上一點(diǎn)P作橢圓的切線交直線于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案