分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,cosβ的值,利用二倍角公式可求cos2β,sin2β的值,利用兩角和的余弦函數(shù)公式可求sin(α+2β)的值,結(jié)合α+2β的范圍,由余弦函數(shù)的性質(zhì)即可得解.
解答 解:∵α,β為銳角,$sinα=\frac{{\sqrt{2}}}{10},sinβ=\frac{{\sqrt{10}}}{10}$,可得:cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{7\sqrt{2}}{10}$,cosβ=$\sqrt{1-si{n}^{2}β}$=$\frac{3\sqrt{10}}{10}$,
∴cos2β=1-2sin2β=1-2×($\frac{\sqrt{10}}{10}$)2=$\frac{4}{5}$,sin2β=2sinβcosβ=2×$\frac{\sqrt{10}}{10}$×$\frac{3\sqrt{10}}{10}$=$\frac{3}{5}$,
∵cos(α+2β)=cosαcos2β-sinαsin2β=$\frac{7\sqrt{2}}{10}$×$\frac{4}{5}$-$\frac{\sqrt{2}}{10}$×$\frac{3}{5}$=$\frac{\sqrt{2}}{2}$,
∵α+2β∈(0,$\frac{3π}{2}$),
∴α+2β=$\frac{π}{4}$.
故答案為:$\frac{4}{5}$,$\frac{π}{4}$.
點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角公式,兩角和的余弦函數(shù)公式,余弦函數(shù)的性質(zhì)在三角函數(shù)化簡求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f({0.7^6})<f({log_{0.7}}6)<f({6^{0.5}})$ | B. | f(60.5)<f(0.76)<f(log0.76) | ||
C. | $f({log_{0.7}}6)<f({0.7^6})<f({6^{0.5}})$ | D. | $f({log_{0.7}}6)<f({6^{0.5}})<f({0.7^6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12個(gè) | B. | 13個(gè) | C. | 14個(gè) | D. | 15個(gè) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com