3.已知函數(shù)f(x)=x3+ax2+bx+c,給出下列結(jié)論:
①函數(shù)f(x)與x軸一定存在交點;
②當(dāng)a2-3b>0時,函數(shù)f(x)既有極大值也有極小值;
③若x0是f(x)的極小值點,則f(x)在區(qū)間(-∞,x0)單調(diào)遞減;
④若f′(x0)=0,則x0是f(x)的極值點.
其中確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4

分析 根據(jù)函數(shù)的單調(diào)性判斷①③,根據(jù)導(dǎo)函數(shù)的根的情況判斷②,特殊值法判斷④.

解答 解:函數(shù)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b,△=4(a2-3b),
若△≤0,則f(x)單調(diào)遞增或單調(diào)遞減,若△>0,f(x)可能遞減、遞增、遞減,或遞增、遞減、遞增;
①函數(shù)f(x)與x軸一定存在交點;①正確;
②當(dāng)a2-3b>0時,即△>0,函數(shù)f(x)既有極大值也有極小值;②正確;
③若x0是f(x)的極小值點,可能f(x)遞減、遞增、遞減,則f(x)在區(qū)間(-∞,x0)不一定單調(diào)遞減;③錯誤;
④若f′(x0)=0,則x0是f(x)的極值點;④錯誤,比如a=b=c=0時,f(x)=x3,f(0)=0,卻不是極值點;
故選:B.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知sinα=-$\frac{3}{5}$,且α∈(-π,-$\frac{π}{2}$),則sin$\frac{α}{2}$=-$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=lnx-x
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①-3是函數(shù)y=f(x)的極小值點;    
②-1是函數(shù)y=f(x)的極小值點;
③y=f(x)在x=0處切線的斜率小于零;  
④y=f(x)在區(qū)間(-3,1)上單調(diào)增.
則正確命題的序號是(  )
A.①④B.①②C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ex-2x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)證明:當(dāng)x>0時,x2<ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a為常數(shù),函數(shù)f(x)=x(lnx-2ax)有兩個極值點x1,x2($x_1^{\;}<{x_2}$)( 。
A.f(x1)<0,$f({x_2})>-\frac{1}{2}$B.f(x1)<0,$f({x_2})<\frac{1}{2}$C.f(x1)>0,$f({x_2})<-\frac{1}{2}$D.f(x1)>0,$f({x_2})>\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+1,g(x)=2ax+b(a,b∈R).
(1)若a=$\frac{1}{2}$,b=-2,求函數(shù)G(x)=f(x)g(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,求證:函數(shù)F(x)=$\frac{g(x)}{f(x)}$有一個極小值和一個極大值點;
(3)當(dāng)b=0時,若對任意的x∈(0,∞),f(x)+g(x)<ex恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.用五點法作函數(shù)y=2sin(2x+$\frac{π}{3}$)的簡圖; 并求函數(shù)的單調(diào)減區(qū)間以及函數(shù)取得最大值時x的取值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在四棱錐S-ABCD中,底面ABCD是正方形,平面SAD⊥平面ABCD,SA=SD=2,AB=3.
(1)求SA與BC所成角的余弦值;
(2)求證:AB⊥SD.

查看答案和解析>>

同步練習(xí)冊答案