17.已知平面向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(1,1),則向量$\frac{3}{2}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$等于( 。
A.(2,1)B.(1,-2)C.(1,0)D.(2,-1)

分析 由平面向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(1,1),利用向量的坐標運算法則能求出向量$\frac{3}{2}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$.

解答 解:∵平面向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(1,1),
∴向量$\frac{3}{2}\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$=($\frac{3}{2},-\frac{3}{2}$)-($\frac{1}{2},\frac{1}{2}$)=(1,-2).
故選:B.

點評 本題考查平面向量坐標求法,是基礎題,解題時要認真審題,注意向量的坐標運算法則的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.設m,n∈N,f(x)=(1+x)m+(1+x)n
(1)當m=n=5時,若$f(x)={a_5}{(1-x)^5}+{a_4}{(1-x)^4}+…+{a_1}(1-x)+{a_0}$,求a0+a2+a4的值;
(2)f(x)展開式中x的系數(shù)是9,當m,n變化時,求x2系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖所示,程序據(jù)圖(算法流程圖)的輸出結(jié)果為( 。
A.$\frac{3}{4}$B.$\frac{1}{6}$C.$\frac{11}{12}$D.$\frac{25}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.f(x)為奇函數(shù),且x>0時,f(x)=x2-2x,則x<0時,f(x)=( 。
A.f(x)=x2+2-xB.f(x)=x2-2-xC.f(x)=-x2+2-xD.f(x)=-x2-2-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{x}{{1+{x^2}}}$,x∈(0,1).
(1)令x1,x2∈(0,1),證明:(x1-x2)•[f(x1)-f(x2)]≥0;
(2)若x∈(0,1)時,恒有$\frac{{3{x^2}-x}}{{1+{x^2}}}≥a({x-\frac{1}{3}})$,求a的值;
(3)若x1,x2,x3都是正數(shù),且x1+x2+x3=1,求$y=\frac{{3x_1^2-{x_1}}}{1+x_1^2}+\frac{{3x_2^2-{x_2}}}{1+x_2^2}+\frac{{3x_3^2-{x_3}}}{1+x_3^2}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.拋物線y2=8x的準線方程是( 。
A.x=2B.y=2C.x=-2D.y=-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在區(qū)間[-2,3]上隨機取一個數(shù)x,則x∈[-1,1]的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,則z=x+2y的最小值為(  )
A.0B.0.5C.2D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.從甲、乙、丙、丁四名同學中選2人參加普法知識競賽,則甲被選中的概率為( 。
A.$\frac{3}{4}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案