13.小明愛好玩飛鏢,現(xiàn)有圖形構(gòu)成如圖所示的兩個(gè)邊長為2的正方形ABCD和OPQR,如果O點(diǎn)正好是正方形ABCD的中心,而正方形OPQR可以繞點(diǎn)O旋轉(zhuǎn),則小明射中陰影部分的概率是$\frac{1}{7}$.

分析 連OA,OB,設(shè)OR交BC于M,OP交AB于N,由四邊形ABCD為正方形,得到OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,而四邊形ORQP為正方形,得∠NOM=90°,所以∠MOB=∠NOA,則△OBM≌△OAN,即可得到S四邊形MONB=S△AOB,從而求出小明射中陰影部分的概率值.

解答 解:連OA,OB,設(shè)OR交BC于M,OP交AB于N,
如圖示:

∵四邊形ABCD為正方形,
∴OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,
而四邊形ORQP為正方形,
∴∠NOM=90°,
∴∠MOB=∠NOA,
∴△OBM≌△OAN,
∴S四邊形MONB=S△AOB=$\frac{1}{4}$×2×2=1,
即它們重疊部分的面積為1,
總面積是7,
故小明射中陰影部分的概率P=$\frac{1}{7}$,
故答案為:$\frac{1}{7}$.

點(diǎn)評 本題考查了幾何概型問題,考查旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.也考查了正方形的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別為棱AA1,BB1,A1B1的中點(diǎn),則點(diǎn)G到平面EFD1的距離為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列結(jié)論錯(cuò)誤的是( 。
A.命題“若p,則q”與命題“若非q,則非p”互為逆否命題
B.命題“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”
C.“若f′(x)=0,則x為y=f(x)的極值點(diǎn)”為真命題
D.“am2<bm2”是“a<b”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x+$\frac{t}{x}$(t>0)有如下性質(zhì):該函數(shù)在(0,$\sqrt{t}$]上是減函數(shù),在[$\sqrt{t}$,+∞)是增函數(shù)
(1)若g(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,求g(x)的解析式
(2)已知函數(shù)h(x)=$\frac{4{x}^{2}-12x-3}{2x+1}$(x∈[0,1]),利用上述性質(zhì),求h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\frac{1}{2}$x2+2ax,g(x)=3a2lnx+b,設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同,則a∈(0,+∞)時(shí),實(shí)數(shù)b的最大值是$\frac{3}{2}{e}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A1,右焦點(diǎn)為F2,過點(diǎn)F2作垂直于x軸的直線交該橢圓于M,N兩點(diǎn),直線A1M的斜率為$\frac{1}{2}$.
(1)求橢圓的離心率;
(2)若△A1MN的外接圓在M處的切線與橢圓交于另一點(diǎn)D,且△F2 MD的面積為$\frac{12}{7}$,求該橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式x(x+3)≥0的解集是( 。
A.{x|-3≤x≤0}B.{x|x≥0或x≤-3}C.{x|0≤x≤3}D.{x|x≥3或x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知四棱錐P-ABCD的底面為矩形,PA=AD=1,AB=2,且PA⊥平面ABCD,E,F(xiàn)分別為AB,PC的中點(diǎn).
(Ⅰ)求證:EF⊥平面PCD;
(Ⅱ)求二面角C-PD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=lnx+\frac{a}{2}{x^2}-(a+1)x$.
(1)若曲線y=f(x)在x=1處的切線方程為y=-2,求f(x)的單調(diào)區(qū)間;
(2)若x>0時(shí),$\frac{f(x)}{x}<\frac{f'(x)}{2}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案