17.已知數(shù)列{an}中,a4=$\frac{1}{8}$,an=$\frac{{a}_{n-1}}{2{a}_{n-1}+1}$(n≥2).
(1)證明:$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+2(n≥2),并求出a1的值.
(2)求數(shù)列{an}的通項an

分析 (1)通過對an=$\frac{{a}_{n-1}}{2{a}_{n-1}+1}$(n≥2)取倒數(shù)可得$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+2(n≥2),利用$\frac{1}{{a}_{4}}$=$\frac{1}{{a}_{1}}$+3•2及a4=$\frac{1}{8}$,即得a1=$\frac{1}{2}$;
(2)通過由(1)得數(shù)列{$\frac{1}{{a}_{n}}$}為首項、公差均為2的等差數(shù)列,進而可得結(jié)論.

解答 (1)證明:∵an=$\frac{{a}_{n-1}}{2{a}_{n-1}+1}$(n≥2),
∴$\frac{1}{{a}_{n}}$=$\frac{2{a}_{n-1}+1}{{a}_{n-1}}$=2+$\frac{1}{{a}_{n-1}}$,
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+2(n≥2),
∴$\frac{1}{{a}_{4}}$=$\frac{1}{{a}_{1}}$+3•2,
又∵a4=$\frac{1}{8}$,
∴$\frac{1}{{a}_{1}}$=$\frac{1}{\frac{1}{8}}$-6=2,
∴a1=$\frac{1}{2}$;
(2)解:由(1)可得$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=2(n≥2),$\frac{1}{{a}_{1}}$=2,
∴$\frac{1}{{a}_{n}}$=2+2(n-1)=2n,
∴an=$\frac{1}{2n}$.

點評 本題考查數(shù)列的通項及判斷數(shù)列為等差數(shù)列,對表達式兩端取倒數(shù)是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,如圖是根據(jù)某地某日早7點至晚8點甲、乙兩個監(jiān)測點統(tǒng)計的數(shù)據(jù)(單位:毫克/每立方米)列出的莖葉圖,則甲、乙兩地濃度的方差較小的是甲.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若實數(shù)x,y滿足$\left\{\begin{array}{l}{y≤2}\\{|x|-y+1≤0}\end{array}\right.$,則z=$\frac{x+y}{x-2}$的最小值為( 。
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知A,B,P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1上不同的三點,且A,B連線經(jīng)過坐標原點,若直線PA,PB的斜率乘積kPA•kPB=$\frac{1}{4}$,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{3}$C.2D.$\frac{\sqrt{15}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,($\overrightarrow{a}$-$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=8.
(1)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)求|2$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖所示的幾何體的俯視圖是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.因式分解:a5-16a=a(a2+4)(a+2)(a-2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}為等比數(shù)列,a1=1,且a2,a3+1,a4成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式an
(Ⅱ)若數(shù)列{bn}滿足:bn=$\frac{a_n}{{({a_n}+1)({a_{n+1}}+1)}}$,設其前n項和為Sn,證明:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.若矩陣M=$[\begin{array}{l}{a}&{2}\\{c}&{1}\end{array}]$屬于特征值3的一個特征向量為$\overrightarrow{α}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,求矩陣M的逆矩陣M-1

查看答案和解析>>

同步練習冊答案