已知a、b∈R+且3a+2b=2,求ab最大值及a、b.
考點:基本不等式
專題:不等式的解法及應用
分析:利用基本不等式即可得出.
解答: 解:∵a、b∈R+且3a+2b=2,
∴3a+2b=2≥2
3a•2b
,化為ab≤
1
6
,當且僅當3a=2b=1時取等號.
∴ab最大值為
1
6
,a=
1
3
,b=
1
2
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)=
1
|x-2|
,
(x≠2)
1,(x=2)
,若關(guān)于x的方程f2(x)-mf(x)+m-1=0(其中m>2)有n個不同的實數(shù)根x1,x2,…xn,則f(
n
i=1
xi)的值為( 。
A、
1
4
B、
1
8
C、
1
12
D、
1
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[-
1
2
3
2
],求函數(shù)g(x)=f(3x)+f(
x
3
)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式
x2+2ax+1+a2
x2+x+a
>0對一切實數(shù)x都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(m+1)x2-(m-1)x+3(m-1)<0對任何實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,-1),
b
=(x,2),
c
=(-3,y),且
a
b
c
,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R)在一個周期內(nèi)的圖象如圖所示,
(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)f(x)的單調(diào)減區(qū)間.
(3)直線y=
3
與函數(shù)f(x)圖象的所交的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求f(x)=x2-2tx+2在[1,2]上的最小值g(t).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1-tanθ
1+tanθ
=3+2
2
,θ∈(0,π),則
(sinθ+cosθ)-1
cotθ-sinθ•cosθ
=
 

查看答案和解析>>

同步練習冊答案