設(shè)函數(shù).
(1)求的最小正周期;
(2)求的單調(diào)遞減區(qū)間.

(1);(2).

解析試題分析:(1)先將函數(shù)的解析式利用二倍角的降冪公式與輔助角公式將函數(shù)的解析式化簡(jiǎn)為,再利用周期公式求函數(shù)的最小正周期;(2)先求出正弦函數(shù)的單調(diào)遞減區(qū)間,然后利用“整體法”由,求解出即作為對(duì)應(yīng)函數(shù)的單調(diào)遞減區(qū)間.
試題解析:(1)
,
函數(shù)的最小正周期為;
(2)函數(shù)的單調(diào)遞減區(qū)間為,
,
解得,,
函數(shù)的單調(diào)遞減區(qū)間為.
考點(diǎn):1.二倍角公式‘2.輔助角公式;3.三角函數(shù)的周期性與單調(diào)性

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)(其中>0,),且f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
(1)求的值;
(2)如果在區(qū)間的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角A、B、C的對(duì)邊分別為,已知向量且滿(mǎn)足.
(1)求角A的大;
(2)若試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的最小正周期及對(duì)稱(chēng)軸方程;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,bc=6,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,函數(shù).
⑴設(shè),x為某三角形的內(nèi)角,求時(shí)x的值;
⑵設(shè),當(dāng)函數(shù)取最大值時(shí),求cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

下圖是函數(shù))的一段圖像.
 
(1)寫(xiě)出此函數(shù)的解析式;
(2)求該函數(shù)的對(duì)稱(chēng)軸方程和對(duì)稱(chēng)中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)其中向量,.
(1)求的最小值,并求使取得最小值的的集合;
(2)將函數(shù)的圖象沿軸向右平移,則至少平移多少個(gè)單位長(zhǎng)度,才能使得到的函數(shù)的圖象關(guān)于軸對(duì)稱(chēng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的部分圖象如圖所示,其中點(diǎn)A為最高點(diǎn),點(diǎn)B,C為圖象與軸的交點(diǎn),在中,角對(duì)邊為,,且滿(mǎn)足.

(1)求的面積;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ef/d/6jcyk.png" style="vertical-align:middle;" />,值域?yàn)閇-5,1],求實(shí)數(shù)的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案