已知命題:“x∈R,都有不等式|2x-1|+|x+2|+2x-m2-2m+2≥0成立”是真命題,
(1)求實(shí)數(shù)m的取值集合B;
(2)設(shè)不等式(x+3a)(x-a+2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)恒成立問(wèn)題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)不等式恒成立,建立等價(jià)條件即可求實(shí)數(shù)m的取值集合B;
(2)根據(jù)充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:(1)命題:“?x∈{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命題,
得x2-x-m<0在-1≤x≤1恒成立,
∴m>(x2-x)max得m>2即B=(2,+∞).
(2)不等式(x-3a)(x-a-2)<0
①當(dāng)3a>2+a,即a>1時(shí)解集A=(2+a,3a),若x∈A是x∈B的充分不必要條件,
則A⊆B,∴2+a≥2此時(shí)a∈(1,+∞).
②當(dāng)3a=2+a,即a=1時(shí)解集A=φ,若x∈A是x∈B的充分不必要條件,則A?B成立.
③當(dāng)3a<2+a,即a<1時(shí)解集A=(3a,2+a),
若x∈A是x∈B的充分不必要條件,則A?B成立,
∴3a≥2此時(shí)a∈[
2
3
,1)

綜上①②③:a∈[
2
3
,+∞)
點(diǎn)評(píng):本題主要考查不等式恒成立問(wèn)題的求解以及充分條件和必要條件的應(yīng)用,注意要對(duì)參數(shù)進(jìn)行分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在由三條直線x-y+2=0,x+y-4=0,x+2y+1=0圍成的三角形內(nèi)求一點(diǎn),使其到三直線的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{bn}滿足b1=
1
2
,b2=
1
4
.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,a1=1,且nan+1=2Sn(n∈N*).
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)令Tn=a1b1+a2b2+…+anbn,若對(duì)任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,試求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=|x2-1|的圖象與函數(shù)y=x+k的圖象交點(diǎn)恰為3個(gè),則實(shí)數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-3x+2+2lnx(a>0)
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間,并指出在每個(gè)單調(diào)區(qū)間上是增函數(shù)還是減函數(shù);
(2)求實(shí)數(shù)a的取值范圍,使對(duì)任意的x∈[1,+∞),恒有f(x)≥0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

知函數(shù)f(x)=
(x-a)2(x≤0)
1
x
+x+a(x>0)
的最小值為f(0),則a的取值范圍是( 。
A、[-1,2]
B、[0,2]
C、[1,2]
D、[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某輪船航行過(guò)程中每小時(shí)的燃料費(fèi)u與其速度v的立方成正比.已知當(dāng)速度為10千米/小時(shí),燃料費(fèi)10元/小時(shí),其他與速度無(wú)關(guān)的費(fèi)用每小時(shí)160元.設(shè)每千米航程成本為y.
(1)試用速度v表示輪船每千米航程成本y;
(2)輪船的速度為多少時(shí),每千米航程成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x),對(duì)任意的x∈R,滿足f(-x)+f(x)=0,f(2-x)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=ax,若方程f(x)-lgx=0恰有五個(gè)實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
A、(-lg11,-lg7)∪(2lg3,lg13)
B、(-2lg3,-lg7)∪(lg11,lg13)
C、(-lg13,-lg11)∪(lg7,2lg3)
D、(-lg13,-2lg3)∪(lg7,lg11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,最小正周期為2π的是(  )
A、y=cosx
B、y=sin(2x+π)
C、y=tanx
D、y=|sinx|

查看答案和解析>>

同步練習(xí)冊(cè)答案