11.已知各項(xiàng)不為0的等差數(shù)列{an}滿足${a_5}-{a_7}^2+{a_9}=0$,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b2b8b11的值等于8.

分析 由等差數(shù)列和等比數(shù)列的通項(xiàng)公式和性質(zhì)可得b7=a7=2,而b2b8b11=b73,代值計(jì)算可得.

解答 解:∵各項(xiàng)不為0的等差數(shù)列{an}滿足${a_5}-{a_7}^2+{a_9}=0$,
∴2a7-a72=0,解得a7=2,∴b7=a7=2,
∴b2b8b11=b6b8b7=b73=8,
故答案為:8.

點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式和性質(zhì),屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=|x-1|,則${∫}_{-2}^{2}$f(x)dx的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$的弦被點(diǎn)(4,2)平分,求這條弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\left\{{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}}\right.$,若目標(biāo)函數(shù)z=4ax+3by(a>0,b>0)最大值為12,則$\frac{1}{a}+\frac{1}$的最小值為( 。
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,則該幾何體的體積為12,表面積為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知F1、F2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn),P是橢圓上一點(diǎn)(異于左、右頂點(diǎn)),點(diǎn)E是△PF1F2的內(nèi)心,若3|PE|2=|PF1|•|PF2|,則橢圓的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某三棱錐的三視圖如圖所示,則該三棱錐的最長棱的棱長為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)長方體底面為正方形且邊長為4,高為h,若這個(gè)長方體能裝下8個(gè)半徑為1的小球和一個(gè)半徑為2的大球,則h的最小值為( 。
A.8B.2+2$\sqrt{7}$C.2+2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知?jiǎng)訄A過定點(diǎn)F(0,-1),且與直線l:y=1相切,橢圓N的對(duì)稱軸為坐標(biāo)軸,O點(diǎn)為坐標(biāo)原點(diǎn),F(xiàn)是其一個(gè)焦點(diǎn),又點(diǎn)A(0,2)在橢圓N上.若過F的動(dòng)直線m交橢圓于B,C點(diǎn),交軌跡M于D,E兩點(diǎn),設(shè)S1為△ABC的面積,S2為△ODE的面積,令Z=S1S2,Z的最小值是9.

查看答案和解析>>

同步練習(xí)冊(cè)答案