分析 判斷弦所在直線與橢圓相交,設(shè)弦的端點(diǎn)為(x1,y1),(x2,y2),代入橢圓方程,相減,結(jié)合中點(diǎn)坐標(biāo)公式和直線的斜率公式,可得斜率,再由點(diǎn)斜式方程即可得到所求.
解答 解:把(4,2)代入橢圓方程,可得$\frac{16}{36}$+$\frac{4}{9}$<1,
即有弦所在直線與橢圓相交,
設(shè)弦的端點(diǎn)為(x1,y1),(x2,y2),
即有$\frac{{{x}_{1}}^{2}}{36}$+$\frac{{{y}_{1}}^{2}}{9}$=1,$\frac{{{x}_{2}}^{2}}{36}$+$\frac{{{y}_{2}}^{2}}{9}$=1,
相減可得$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{36}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{9}$=0,
由題意可得x1+x2=8,y1+y2=4,
可得弦所在直線的斜率為k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{{x}_{1}+{x}_{2}}{4({y}_{1}+{y}_{2})}$=-$\frac{1}{2}$,
則弦所在直線的方程為y-2=-$\frac{1}{2}$(x-4),
即有x+2y-8=0.
點(diǎn)評 本題考查直線的方程的求法,注意運(yùn)用點(diǎn)差法,以及中點(diǎn)坐標(biāo)公式和直線的斜率公式,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $-\frac{5}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
月份i | 1 | 2 | 3 | 4 | 5 | 6 |
單價xi(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量yi(件) | 11 | 10 | 8 | 6 | 5 | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com