【題目】為了弘揚中華民族傳統(tǒng)文化,某中學高二年級舉行了“愛我中華,傳誦經(jīng)典”的考試,并從中隨機抽取了名學生的成績(滿分分)作為樣本,其中成績不低于分的學生被評為優(yōu)秀生,得到成績分布的頻率分布直方圖如圖所示.
(1)若該年級共有名學生,試利用樣本估計該年級這次考試中優(yōu)秀生人數(shù);
(2)試估計這次參加考試的學生的平均成績(同一組數(shù)據(jù)用該組區(qū)間中點值作代表);
(3)若在樣本中,利用分層抽樣從成績不低于分的學生中隨機抽取人,再從中抽取人贈送一套國學經(jīng)典典籍,試求恰好抽中名優(yōu)秀生的概率.
【答案】(1)人;(2);(3).
【解析】
(1)由直方圖知,樣本中數(shù)據(jù)落在的頻率為,由此能估計全校這次考試中優(yōu)秀生人數(shù);
(2)將每個矩形底邊的中點值乘以矩形的面積,再將所得結(jié)果相加即可得出樣本數(shù)據(jù)的平均數(shù);
(3)由分層抽樣可知成績在、、間分別抽取了、、人,記成績在的人為、、,在的人為、,在的人記為,列出所有的基本事件,利用古典概型的概率公式可求出所求事件的概率.
(1)由直方圖知,樣本中數(shù)據(jù)落在的頻率為:,
則估計全校這次考試中優(yōu)秀生人數(shù)為:人;
(2)該樣本數(shù)據(jù)的平均數(shù)為:
,
估計所有參加考試的學生的平均成績?yōu)?/span>;
(3)由分層抽樣可知成績在、、間分別抽取了、、人,
記成績在的人為、、,在的人為、,在的人記為,
則人中抽取人的所有情況有種,分別為:
、、、、、、、、、、、、、、,
記抽取人為優(yōu)秀生為事件,則事件包含的基本事件有:、、,共種,
因此,恰好抽中名優(yōu)秀生的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:,;命題q:方程表示雙曲線.
⑴若命題p為真命題,求實數(shù)m的取值范圍;
⑵若命題“”為真命題,“”為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù),).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,射線與曲線交于兩點,直線與曲線相交于兩點.
(Ⅰ)求直線的普通方程和曲線C的直角坐標方程;
(Ⅱ)當時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是函數(shù)的極值點.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求證:函數(shù)存在唯一的極小值點,且.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年春節(jié)期間.當紅彩視明星翟天臨“不知“知網(wǎng)””學術(shù)不端事件在全國鬧得沸沸揚揚,引發(fā)了網(wǎng)友對亞洲最大電影學府北京電影學院、乃至整個中國學術(shù)界高等教育亂象的反思.為進一步端正學風,打擊學術(shù)造假行為,教育部日前公布的《教育部2019年部門預算》中透露,2019年教育部擬抽檢博士學位論文約6000篇,預算為800萬元.國務院學位委員會、教育部2014年印發(fā)的《博士碩士學位論文抽檢辦法》通知中規(guī)定:每篇抽檢的學位論文送3位同行專家進行評議,3位專家中有2位以上(含2位)專家評議意見為“不合格”的學位論文.將認定為“存在問題學位論文”。有且只有1位專家評議意見為“不合格”的學位論文,將再送2位同行專家進行復評.2位復評專家中有1位以上(含1位)專家評議意見為“不合格”的學位論文,將認定為“存在問題學位論文”。設(shè)毎篇學位論文被毎位專家評議為“不合格”的槪率均為,且各篇學位論文是否被評議為“不合格”相互獨立.
(1)記一篇抽檢的學位論文被認定為“存在問題學位論文”的概率為,求;
(2)若擬定每篇抽檢論文不需要復評的評審費用為900元,需要復評的評審費用為1500元;除評審費外,其它費用總計為100萬元,F(xiàn)以此方案實施,且抽檢論文為6000篇,問是否會超過預算?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點是正方形對角線的交點,且.
(1)證明:平面;
(2)若側(cè)面與底面垂直,求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若函數(shù)存在極值,對于任意的,存在正實數(shù),使得,試判斷與的大小關(guān)系并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com