【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若函數(shù)存在極值,對于任意的,存在正實(shí)數(shù),使得,試判斷與的大小關(guān)系并給出證明.
【答案】(Ⅰ)當(dāng)時(shí),在上單調(diào)遞增.當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.(Ⅱ)詳見解析
【解析】【試題分析】(Ⅰ)依據(jù)題設(shè)條件先求導(dǎo),再分類討論探求;(Ⅱ)借助題設(shè)條件,運(yùn)用等價(jià)轉(zhuǎn)化與化歸的數(shù)學(xué)思想進(jìn)行轉(zhuǎn)化,然后再運(yùn)用導(dǎo)數(shù)的知識分析探求:
解(Ⅰ)的定義域?yàn)?/span>,.
當(dāng)時(shí),則,所以在上單調(diào)遞增.
當(dāng)時(shí),則由得,,(舍去).當(dāng)時(shí),,當(dāng)時(shí),.所以在上單調(diào)遞增,在上單調(diào)遞減.
綜上所述,當(dāng)時(shí),在上單調(diào)遞增.
當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.
(Ⅱ)由(Ⅰ)知,當(dāng)時(shí),存在極值.
.
由題設(shè)得.
又,所以
.設(shè),則,則.
令,則,所以在上單調(diào)遞增,所以,故.
又因?yàn)?/span>,因此,即.
又由知在上單調(diào)遞減,所以,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,,,)的圖象在點(diǎn)處的切線的斜率為,且函數(shù)為偶函數(shù).若函數(shù)滿足下列條件:①;②對一切實(shí)數(shù),不等式恒成立.
(1)求函數(shù)的表達(dá)式;
(2)設(shè)函數(shù)()的兩個(gè)極值點(diǎn),()恰為的零點(diǎn),當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋中裝有2個(gè)白球和n(n≥2,nN*)個(gè)紅球.每次從袋中摸出2個(gè)球(每次摸球后把這2個(gè)球放回口袋中),若摸出的2個(gè)球顏色相同則為中獎(jiǎng),否則為不中獎(jiǎng).
(I)用含n的代數(shù)式表示1次摸球中獎(jiǎng)的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中獎(jiǎng)的概率;
(III)記3次摸球中恰有1次中獎(jiǎng)的概率為f(p),當(dāng)f(p)取得最大值時(shí),求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)滿足:.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)已知直線都過點(diǎn),且,與軌跡分別交于點(diǎn),試探究是否存在這樣的直線?使得是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家用電器公司生產(chǎn)一新款熱水器,首先每年需要固定投入 200萬元,其次每生產(chǎn)1百臺,需再投入0.9萬元.假設(shè)該公司生產(chǎn)的該款熱水器當(dāng)年能全部售出,但每銷售1百臺需另付運(yùn)輸費(fèi)0.1萬元.根據(jù)以往的經(jīng)驗(yàn),年銷售總額(萬元)關(guān)于年產(chǎn)量(百臺)的函數(shù)為.
(1)將年利潤表示為年產(chǎn)量的函數(shù);
(2)求該公司生產(chǎn)的該款熱水器的最大年利潤及相應(yīng)的年產(chǎn)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在天每件的銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系用如圖表示,該商品在天內(nèi)日銷售量(件)與時(shí)間(天)之間的關(guān)系如下表:
天 | ||||
件 |
()根據(jù)提供的圖象(如圖),寫出該商品每件的銷售價(jià)格與時(shí)間的函數(shù)關(guān)系式.
()根據(jù)表提供的數(shù)據(jù),寫出日銷售量與時(shí)間的一次函數(shù)關(guān)系式.
()求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天.(日銷售金額每件的銷售價(jià)格日銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)時(shí)代的到來,手機(jī)的使用非常普遍,“低頭族”隨處可見。某校為了解家長和教師對學(xué)生帶手機(jī)進(jìn)校園的態(tài)度,隨機(jī)調(diào)查了100位家長和教師,得到情況如下表:
教師 | 家長 | |
反對 | 40 | 20 |
支持 | 20 | 20 |
(1)是否有95%以上的把握認(rèn)為“帶手機(jī)進(jìn)校園與身份有關(guān)”,并說明理由;
(2)把以上頻率當(dāng)概率,隨機(jī)抽取3位教師,記其中反對學(xué)生帶手機(jī)進(jìn)校園的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校1000名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為,視力在4.6到5.0之間的學(xué)生數(shù), 的值分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在“十一”黃金周期間降價(jià)搞促銷,某超市對顧客實(shí)行購物優(yōu)惠活動(dòng),規(guī)定一次購物付款總額:(1)如果不超過200元,則不予優(yōu)惠;(2)如果超過200元,但不超過500元,則按標(biāo)價(jià)給予9折優(yōu)惠;(3)如果超過500元,其中500元按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠。小張兩次去購物,分別付款168元和423元,假設(shè)她一次性購買上述同樣的商品,則應(yīng)付款額為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com