【題目】已知函數(shù),.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)使得成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)答案不唯一,具體見(jiàn)解析(Ⅱ)

【解析】

(Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的范圍,求出函數(shù)的單調(diào)區(qū)間即可。

(Ⅱ)由于時(shí),,若要使得成立,只需時(shí),成立,利用導(dǎo)數(shù)討論的最大值和的最小值,即可求出實(shí)數(shù)的取值范圍。

(Ⅰ)由題可得的定義域?yàn)?/span>,,

當(dāng)時(shí),,解得,或,,解得,

上是增函數(shù),在上是減函數(shù);

當(dāng)時(shí),,解得,或,,解得,

上是增函數(shù),在上是減函數(shù);

當(dāng)時(shí),恒成立,且只在時(shí),∴上是增函數(shù).

(Ⅱ)時(shí),,

若要使得成立,

只需時(shí),成立,

由(Ⅰ)知當(dāng)時(shí),上是增函數(shù),,

當(dāng)時(shí),上是減函數(shù),在上是增函數(shù),

,

當(dāng)時(shí),上是減函數(shù),,

,對(duì)稱軸,

當(dāng)時(shí),上是增函數(shù),,

,解得,∴,

當(dāng)時(shí),上是增函數(shù),在上是減函數(shù),

,,

整理得,∵,∴只需

,,當(dāng)時(shí),上是增函數(shù),又,∴時(shí),,∴.

當(dāng)時(shí),上是減函數(shù),,

,解得,

綜上所述,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),對(duì)于任意,,總有.若對(duì)于任意,存在,使成立,則實(shí)數(shù)的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩個(gè)學(xué)校高三年級(jí)分別有1100人,1000人,為了了解兩個(gè)學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)一模考試的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩個(gè)學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:

1)計(jì)算,的值;

2)若規(guī)定考試成績(jī)?cè)?/span>為優(yōu)秀,請(qǐng)根據(jù)樣本估計(jì)乙校數(shù)學(xué)成績(jī)的優(yōu)秀率;

3)若規(guī)定考試成績(jī)?cè)?/span>內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,若按是否優(yōu)秀來(lái)判斷,是否有的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績(jī)有差異.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年3月5日,國(guó)務(wù)院總理李克強(qiáng)作的政府工作報(bào)告中,提到要“懲戒學(xué)術(shù)不端,力戒學(xué)術(shù)不端,力戒浮躁之風(fēng)”.教育部日前公布的《教育部2019年部門(mén)預(yù)算》中透露,2019年教育部擬抽檢博士學(xué)位論文約6000篇,預(yù)算為800萬(wàn)元.國(guó)務(wù)院學(xué)位委員會(huì)、教育部2014年印發(fā)的《博士碩士學(xué)位論文抽檢辦法》通知中規(guī)定:每篇抽檢的學(xué)位論文送3位同行專(zhuān)家進(jìn)行評(píng)議,3位專(zhuān)家中有2位以上(含2位)專(zhuān)家評(píng)議意見(jiàn)為“不合格”的學(xué)位論文,將認(rèn)定為“存在問(wèn)題學(xué)位論文”.有且只有1位專(zhuān)家評(píng)議意見(jiàn)為“不合格”的學(xué)位論文,將再送2位同行專(zhuān)家進(jìn)得復(fù)評(píng),2位復(fù)評(píng)專(zhuān)家中有1位以上(含1位)專(zhuān)家評(píng)議意見(jiàn)為“不合格”的學(xué)位論文,將認(rèn)定為“存在問(wèn)題學(xué)位論文”.設(shè)每篇學(xué)位論文被每位專(zhuān)家評(píng)議為“不合格”的概率均為,且各篇學(xué)位論文是否被評(píng)議為“不合格”相互獨(dú)立.

(1)記一篇抽檢的學(xué)位論文被認(rèn)定為“存在問(wèn)題學(xué)位論文”的概率為,求;

(2)若擬定每篇抽檢論文不需要復(fù)評(píng)的評(píng)審費(fèi)用為900元,需要復(fù)評(píng)的評(píng)審費(fèi)用為1500元;除評(píng)審費(fèi)外,其它費(fèi)用總計(jì)為100萬(wàn)元.現(xiàn)以此方案實(shí)施,且抽檢論文為6000篇,問(wèn)是否會(huì)超過(guò)預(yù)算?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過(guò)分別作拋物線的切線,交于點(diǎn).

(Ⅰ)求的值;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了弘揚(yáng)中華民族傳統(tǒng)文化,某中學(xué)高二年級(jí)舉行了“愛(ài)我中華,傳誦經(jīng)典”的考試,并從中隨機(jī)抽取了名學(xué)生的成績(jī)(滿分分)作為樣本,其中成績(jī)不低于分的學(xué)生被評(píng)為優(yōu)秀生,得到成績(jī)分布的頻率分布直方圖如圖所示.

1)若該年級(jí)共有名學(xué)生,試?yán)脴颖竟烙?jì)該年級(jí)這次考試中優(yōu)秀生人數(shù);

2)試估計(jì)這次參加考試的學(xué)生的平均成績(jī)(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表);

3)若在樣本中,利用分層抽樣從成績(jī)不低于分的學(xué)生中隨機(jī)抽取人,再?gòu)闹谐槿?/span>人贈(zèng)送一套國(guó)學(xué)經(jīng)典典籍,試求恰好抽中名優(yōu)秀生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求適合下列條件的曲線標(biāo)準(zhǔn)方程.

1)虛軸長(zhǎng)為,離心率為的雙曲線的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京市政府為做好會(huì)議接待服務(wù)工作,對(duì)可能遭受污染的某海產(chǎn)品在進(jìn)入餐飲區(qū)前必須進(jìn)行兩輪檢測(cè),只有兩輪都合格才能進(jìn)行銷(xiāo)售,否則不能銷(xiāo)售.已知該海產(chǎn)品第一輪檢測(cè)不合格的概率為,第二輪檢測(cè)不合格的概率為,兩輪檢測(cè)是否合格相互沒(méi)有影響.

1)求該海產(chǎn)品不能銷(xiāo)售的概率.

2)如果該海產(chǎn)品可以銷(xiāo)售,則每件產(chǎn)品可獲利40元;如果該海產(chǎn)品不能銷(xiāo)售,則每件產(chǎn)品虧損80元(即獲利-80元).已知一箱中有該海產(chǎn)品4件,記一箱該海產(chǎn)品獲利元,求的分布列,并求出數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案