【題目】從某市的高一學生中隨機抽取400名同學的體重進行統(tǒng)計,得到如圖所示頻率分布直方圖.
(Ⅰ)估計從該市高一學生中隨機抽取一人,體重超過的概率;
(Ⅱ)假設(shè)該市高一學生的體重服從正態(tài)分布.
(。├茫á瘢┑慕Y(jié)論估計該高一某個學生體重介于 之間的概率;
(ⅱ)從該市高一學生中隨機抽取3人,記體重介于之間的人數(shù)為,利用(ⅰ)的結(jié)論,求的分布列及.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)如今,“網(wǎng)購”一詞不再新鮮,越來越多的人已經(jīng)接受并喜歡了這種購物方式,但隨之也出現(xiàn)了商品質(zhì)量不能保證與信譽不好等問題,因此,相關(guān)管理部門制定了針對商品質(zhì)量與服務(wù)的評價體系,現(xiàn)從評價系統(tǒng)中選出成功交易200例,并對其評價進行統(tǒng)計:對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(1)依據(jù)題中的數(shù)據(jù)完成下表:
(2)通過計算說明,能否有99.9%的把握認為“商品好評與服務(wù)好評”有關(guān);
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
(1)求證:EG⊥DF;
(2)求BE與平面EFGH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)的某種時令商品每件成本為元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來天內(nèi)的日銷售量(件)與時間(天)的關(guān)系如下表所示.
時間/天 | 1 | 3 | 6 | 10 | 36 | …… |
日銷售量 /件 | 94 | 90 | 84 | 76 | 24 | …… |
未來40天內(nèi),前20天每天的價格(元/件)與時間(天)的函數(shù)關(guān)系式為 ,且為整數(shù)),后20天每天的價格(元/件)與時間(天)的函數(shù)關(guān)系式為,且為整數(shù)).
(Ⅰ)認真分析表格中的數(shù)據(jù),用所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)(件)與 (天)的關(guān)系式;
(Ⅱ)試預(yù)測未來 40 天中哪一天的日銷售利潤最大,最大利潤是多少?
(Ⅲ)在實際銷售的前 20 天中,該公司決定每銷售 1 件商品就捐贈元利潤給希望工程. 公司通過銷售記錄發(fā)現(xiàn),前 20 天中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.且曲線的左焦點在直線上.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),在處取得極值.
(1)求的值;
(2)若對任意的,都有成立,(其中是函數(shù)的導函數(shù)),求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.
(1)求M的軌跡方程;
(2)當|OP|=|OM|時,求l的方程及△POM的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺儀器需要增加投入100元,已知總收益滿足函數(shù):R(x)=其中x是儀器的月產(chǎn)量.當月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2-4|x|-5.
(Ⅰ)畫出y=f(x)的圖象;
(Ⅱ)設(shè)A={x|f(x)≥7},求集合A;
(Ⅲ)方程f(x)=k+1有兩解,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com