14.如圖,在四棱錐P-ABCD中,底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2$\sqrt{3}$,PA⊥PD,Q為PD的中點(diǎn).
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)若平面PAD⊥底面ABCD,求直線PD與平面AQC所成角的正弦值.

分析 (I)取PA的中點(diǎn)N,連接QN,BN,則可證四邊形BCQN為平行四邊形,得出CQ∥BN,于是CQ∥平面PAB;
(II)取AD的中點(diǎn)M,連接BM;取BM的中點(diǎn)O,連接BO、PO,則可證OB⊥AD,PO⊥平面ABCD,以O(shè)為原點(diǎn)建立坐標(biāo)系,求出 $\overrightarrow{PD}$和平面ACQ的法向量的坐標(biāo),即可求出直線PD與平面AQC所成角的正弦值.

解答 (Ⅰ)證明:取PA的中點(diǎn)N,連接QN,BN.
∵Q,N是PD,PA的中點(diǎn),
∴QN∥AD,且QN=$\frac{1}{2}$AD.
∵PA=2,PD=2$\sqrt{3}$,PA⊥PD,
∴AD=4,
∴BC=$\frac{1}{2}$AD.又BC∥AD,
∴QN∥BC,且QN=BC,
∴四邊形BCQN為平行四邊形,
∴BN∥CQ.又BN?平面PAB,且CQ?平面PAB,
∴CQ∥平面PAB.
(Ⅱ)解:取AD的中點(diǎn)M,連接BM;取BM的中點(diǎn)O,連接BO、PO.
由(Ⅰ)知PA=AM=PM=2,
∴△APM為等邊三角形,
∴PO⊥AM.同理:BO⊥AM.
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO?平面PAD,
∴PO⊥平面ABCD.
以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)B,OD,OP所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,
則D(0,3,0),A(0,-1,0),P(0,0,$\sqrt{3}$),C($\sqrt{3}$,2,0),Q(0,$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).
∴$\overrightarrow{AC}$=($\sqrt{3}$,3,0),$\overrightarrow{PD}$=(0,3,-$\sqrt{3}$),$\overrightarrow{AQ}$=(0,$\frac{5}{2}$,$\frac{\sqrt{3}}{2}$).
設(shè)平面AQC的法向量為$\overrightarrow{n}$=(x,y,z),
∴$\left\{\begin{array}{l}{\sqrt{3}x+3y=0}\\{\frac{5}{2}y+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,令y=-$\sqrt{3}$得$\overrightarrow{n}$=(3,-$\sqrt{3}$,5).
∴cos<$\overrightarrow{PD}$,$\overrightarrow{n}$>=$\frac{-8\sqrt{3}}{2\sqrt{3}•\sqrt{37}}$=-$\frac{4\sqrt{37}}{37}$.
∴直線PD與平面AQC所成角正弦值為 $\frac{4\sqrt{37}}{37}$.

點(diǎn)評 本題考查了線面平行的判定,空間向量的應(yīng)用與線面角的計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知復(fù)數(shù)z=$\frac{{i+{i^2}+{i^3}+…+{i^{2014}}}}{1+i}$,則復(fù)數(shù)z的模為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.非空集合A、B滿足A?B,U為全集,則下列集合中表示空集的( 。
A.A∩BB.UA∩BC.UA∩∁UBD.A∩∁UB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知平面向量$\overrightarrow{a}$=(1,-$\sqrt{3}$),$\overrightarrow$=(3,$\sqrt{3}$),則向量$\overrightarrow{a}$與向量$\overrightarrow{a}$+$\overrightarrow$的夾角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.長為4、寬為3的矩形ABCD的外接圓為圓O,在圓O內(nèi)任意取點(diǎn)M,則點(diǎn)M在矩形ABCD內(nèi)的概率為$\frac{48}{25π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知兩點(diǎn)F1(-$\sqrt{3}$,0)和F2($\sqrt{3}$,0),動點(diǎn)P滿足|$\overrightarrow{O{F_1}}$+$\overrightarrow{OP}$|+|$\overrightarrow{O{F_2}}$+$\overrightarrow{OP}$|=4.
(Ⅰ)求動點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)曲線C上的兩點(diǎn)M,N在x軸上方,且F1M∥F2N,若以MN為直徑的圓恒過點(diǎn)(0,2),求F1M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若對任意的x1∈[e-1,e],總存在唯一的x2∈[-1,1],使得lnx1-x1+1+a=x22ex2成立,則實(shí)數(shù)a的取值范圍是(  )
A.[$\frac{2}{e}$,e+1]B.(e+$\frac{1}{e}$-2,e]C.[e-2,$\frac{2}{e}$)D.($\frac{2}{e}$,2e-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(sinα,cosα)且$\overrightarrow{a}$∥$\overrightarrow$,則tanα=( 。
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.定義f″(x)是y=f(x)的導(dǎo)函數(shù)y=f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.可以證明,任意三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”和對稱中心,且“拐點(diǎn)”就是其對稱中心,請你根據(jù)這一結(jié)論判斷下列命題:
①存在有兩個(gè)及兩個(gè)以上對稱中心的三次函數(shù);
②函數(shù)f(x)=x3-3x2-3x+5的對稱中心也是函數(shù)$y=tan\frac{π}{2}x$的一個(gè)對稱中心;
③存在三次函數(shù)h(x),方程h′(x)=0有實(shí)數(shù)解x0,且點(diǎn)(x0,h(x0))為函數(shù)y=h(x)的對稱中心;
④若函數(shù)$g(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-\frac{5}{12}$,則$g(\frac{1}{2016})+g(\frac{2}{2016})+g(\frac{3}{2016})+…+g(\frac{2015}{2016})$=-1007.5.
其中正確命題的序號為②③④(把所有正確命題的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案