【題目】設U=R,集合A={x∈R|},B={x∈R|0<x<2},則(UA)∩B=( 。
A.(1,2]
B.[1,2)
C.(1,2)
D.[1,2]

【答案】B
【解析】∵U=R,
集合A={x∈R|}={x∈R|x<1或x>2}=(﹣∞,1)∪(2,+∞),
UA=[1,2];
集合B={x∈R|0<x<2}=(0,2),
∴(UA)∩B=[1,2).
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解交、并、補集的混合運算的相關(guān)知識,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|(x﹣m+2)(x﹣m﹣2)≤0,x∈R,m∈R}.
(1)若A∩B={x|0≤x≤3},求實數(shù)m的值;
(2)若ARB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P ABCD中,E是棱PC上一點,且2,底面ABCD是邊長為2的正方形,△PAD為正三角形,平面ABE與棱PD交于點F,平面PCD與平面PAB交于直線l,且平面PAD⊥平面ABCD.

(1)求證:l∥EF;

(2)求四棱錐P-ABEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的四棱錐S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E為線段BS上的一個動點.

(1)證明:DE和SC不可能垂直;
(2)當點E為線段BS的三等分點(靠近B)時,求二面角S﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位招聘面試,每次從試題庫隨機調(diào)用一道試題,若調(diào)用的是A類型試題,則使用后該試題回庫,并增補一道A類試題和一道B類型試題入庫,此次調(diào)題工作結(jié)束;若調(diào)用的是B類型試題,則使用后該試題回庫,此次調(diào)題工作結(jié)束.試題庫中現(xiàn)共有n+m道試題,其中有n道A類型試題和m道B類型試題,以X表示兩次調(diào)題工作完成后,試題庫中A類試題的數(shù)量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)設m=n,求X的分布列和均值(數(shù)學期望)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f′(x)是函數(shù)f(x)的導函數(shù),且f′(x)>2f(x)(x∈R),f()=e(e為自然對數(shù)的底數(shù)),則不等式f(lnx)<x2的解集為(  )
A.(0,
B.(0,
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在各項均為正數(shù)的等比數(shù)列,且,成等差數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若數(shù)列滿足,為數(shù)列的前項和. 設,當最大時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的S為(  )

A.2
B.
C.-
D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在側(cè)棱垂直底面的四棱柱中, , ,的中點,是平面與直線的交點.

(1)證明: ;

(2)求點到平面的距離.

查看答案和解析>>

同步練習冊答案