分析 求出三個(gè)函數(shù)的導(dǎo)數(shù),利用反證法結(jié)合二次函數(shù)的性質(zhì)推出矛盾結(jié)論,即可證明.
解答 證明:f'(x)=ax2+2bx+c,g'(x)=bx2+2cx+a,h'(x)=cx2+2ax+b.
假設(shè)f(x),g(x),h(x)這三個(gè)函數(shù)都不存在極值,…(2分)
則這三個(gè)函數(shù)的導(dǎo)函數(shù)都不存在變號零點(diǎn),
即:${△_1}=4{b^2}-4ac≤0,{△_2}=4{c^2}-4ab≤0,{△_3}=4{a^2}-4bc≤0$,…(6分)
所以${△_1}+{△_2}+{△_3}=4{b^2}-4ac+4{c^2}-4ab+4{a^2}-4bc≤0$,…(8分)
即(a-b)2+(b-c)2+(a-c)2≤0,與a,b,c是互不相等的非零實(shí)數(shù)矛盾.
所以假設(shè)不成立,所以f(x),g(x),h(x)這三個(gè)函數(shù)中,至少有一個(gè)函數(shù)存在極值.…(12分)
點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,反證法的應(yīng)用,考查分析問題解決問題的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{10}$ | B. | -$\frac{3}{10}$ | C. | $\frac{4\sqrt{3}-3}{10}$ | D. | $\frac{3-4\sqrt{3}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 坐標(biāo)原點(diǎn)對稱 | B. | x軸對稱 | C. | y軸對稱 | D. | 直線y=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b,c>d⇒a-c>b-d | B. | ac2>bc2⇒a>b | C. | ac<bc⇒a<b | D. | a>b⇒$\frac{a}{c}$>$\frac{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}$=$\overrightarrow{DC}$ | B. | $\overrightarrow{AD}$+$\overrightarrow{AB}$=2$\overrightarrow{AO}$ | C. | $\overrightarrow{AD}$+$\overrightarrow{CB}$=$\overrightarrow 0$ | D. | $\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{BD}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com