15.已知f(x)的導(dǎo)函數(shù)為f'(x),滿足xf'(x)+2f(x)=$\frac{1}{x}$,且f(1)=2,則f(x)的最小值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

分析 把已知等式兩邊同時(shí)乘以x,得到[x2f(x)]′=1,令x2f(x)=x+c,由f(1)=2求得c值,則函數(shù)解析式可求,然后利用二次函數(shù)求最值.

解答 解:∵xf′(x)+2f(x)=$\frac{1}{x}$,
∴x2f′(x)+2xf(x)=1,
∴[x2f(x)]′=1,
∴x2f(x)=x+c,
將x=1代入可得:
f(1)=1+c=2,得c=1,
∴x2f(x)=x+1,
∴f(x)=$\frac{x+1}{{x}^{2}}=\frac{1}{{x}^{2}}+\frac{1}{x}$,
∴當(dāng)$\frac{1}{x}=-\frac{1}{2}$,即x=-2時(shí),$f(x)_{min}=-\frac{1}{4}$.
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是導(dǎo)數(shù)的運(yùn)算,導(dǎo)數(shù)在求函數(shù)最值時(shí)的應(yīng)用,關(guān)鍵是合理構(gòu)造函數(shù),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=2sin($\frac{π}{6}$-2x)(其中x∈[-π,0])的單調(diào)遞增區(qū)間是( 。
A.$[{-π,-\frac{5π}{6}}]$B.$[{-\frac{π}{3},0}]$C.$[{-\frac{2π}{3},-\frac{π}{6}}]$D.$[{-\frac{π}{3},-\frac{π}{6}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c是互不相等的非零實(shí)數(shù),函數(shù)f(x)=$\frac{a}{3}{x^3}+b{x^2}$+cx,g(x)=$\frac{3}{x^3}+c{x^2}$+ax,h(x)=$\frac{c}{3}{x^3}+a{x^2}$+bx.利用反證法證明:f(x),g(x),h(x)這三個(gè)函數(shù)中,至少有一個(gè)函數(shù)存在極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)證明不等式$\sqrt{ab}$≤$\frac{a+b}{2}$(a>0,b>0);
(2)若|a|<1,|b|<1,求證|$\frac{a+b}{1+ab}}$|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側(cè)棱AA1⊥平面ABC,且D,E分別是棱A1B1,A1A1的中點(diǎn),點(diǎn)F在棱AB上,且AF=$\frac{1}{4}$AB.
(1)求證:EF∥平面BDC1;
(2)求三棱錐D-BEC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合U={-1,0,1,2},A={-1,2},則∁UA=( 。
A.{0}B.{1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$,ω>0,A>0)其部分圖象如圖所示:
(1)求函數(shù)y=f(x)的表達(dá)式.
(2)已知等腰三角形ABC中,角A,B,C的對邊分別是邊a,b,c,且b=c若g(x)=af(x)+2a+b.當(dāng)x∈[$\frac{π}{2}$,$\frac{4π}{3}$]時(shí),g(x)∈[5,8],求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=log0.5(x2-4)的單調(diào)遞增區(qū)間是( 。
A.(-∞,0)B.(-∞,-2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知{an}是遞增的等差數(shù)列,a3,a5是方程x2-10x+21=0的兩個(gè)根.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn-an}為首項(xiàng)為1,公比為3的等比數(shù)列,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案