9.正三棱柱有一個(gè)直徑為2$\sqrt{3}$的內(nèi)切球,則此棱柱的體積是54.

分析 內(nèi)切球的大圓為三棱柱底面正三角形的內(nèi)切圓,三棱柱的高為球的直徑.

解答 解:∵正三棱柱有一個(gè)直徑為2$\sqrt{3}$的內(nèi)切球,∴三棱柱底面正三角形的內(nèi)切圓為球的大圓.
∴正三棱柱的底面邊長(zhǎng)為2$\sqrt{3}$×$\frac{2\sqrt{3}}{2}$=6.三棱柱的高為2$\sqrt{3}$.
∴正三棱柱的體積V=$\frac{\sqrt{3}}{4}×{6}^{2}×2\sqrt{3}$=54.
故答案為54.

點(diǎn)評(píng) 本題考查了棱柱與內(nèi)切球的關(guān)系,正三棱柱的結(jié)構(gòu)特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)F1、F2是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn),P為直線$x=-\frac{4}{3}a$上一點(diǎn),△F1PF2是底角為30°的等腰三角形,則此橢圓C的離心率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知sinα=$\frac{3}{5},cosα=-\frac{4}{5}$,則角α的終邊在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=x3+2ax2+$\frac{1}{a}$x(a>0),則f′(2)的最小值為( 。
A.12+4$\sqrt{2}$B.16C.8+8a+$\frac{2}{a}$D.12+8a+$\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)已知$tanα=\frac{1}{3}$,求$\frac{sinα+3cosα}{sinα-cosα}$的值.
(2)求$lg25+lg4+{7^{{{log}_7}2}}+{(-9.8)^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.當(dāng)x∈[0,1]時(shí),不等式ax3-x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-6]B.[-6,+∞)C.[-6,0]D.[-6,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在函數(shù)y=x3-8x的圖象上,其切線的傾斜角小于$\frac{π}{4}$的點(diǎn)中,坐標(biāo)為整數(shù)的點(diǎn)的個(gè)數(shù)是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.將十進(jìn)制的數(shù)2015化成二進(jìn)制的數(shù)是( 。
A.111101111(2)B.1111011111(2)C.11111011111(2)D.11111011111(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知角2α的頂點(diǎn)在原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)$(-1,\sqrt{3})$,且2α∈[0,2π),則tanα等于(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案