19.函數(shù)y=sin2x-$\sqrt{3}$cos2x的圖象的一條對稱軸方程為( 。
A.x=$\frac{π}{12}$B.x=-$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=-$\frac{π}{6}$

分析 利用兩角差的正弦函數(shù)化簡,通過正弦函數(shù)的對稱性求解即可.

解答 解:∵y=sin2x-$\sqrt{3}$cos2x=2($\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x)=2sin(2x-$\frac{π}{3}$),
∴2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,
可得x=$\frac{kπ}{2}$+$\frac{5π}{12}$.k∈Z,
當k=-1時,x=-$\frac{π}{12}$是函數(shù)的一條對稱軸,
故選:B.

點評 本題考查兩角和與差的三角函數(shù),正弦函數(shù)的對稱性的應用,基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}滿足an+1=2an,且a1、a2+1、a3成等差數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)記數(shù)列{log2an}的前n項和為Sn,求使不等式Sn>45成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓M:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,一個焦點到相應準線的距離為3,過點A(0,2)且斜率為k (k>0)的直線l與橢圓有且只有一個公共點,l與x軸交于點B.
(1)求橢圓M的方程和直線l的方程;
(2)圓N的圓心在x軸上,且與直線l相切于點A,試在圓N上求一點P,使 PB=3PA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設Sn,Tn分別是等差數(shù)列{an},{bn}的前n項和,若a5=2b5,則$\frac{S_9}{T_9}$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=x-alnx,(a∈R).
(1)當a=2時,求曲線f(x)在x=1處的切線方程;
(2)設函數(shù)$h(x)=f(x)+\frac{1+a}{x}$,求函數(shù)h(x)的單調區(qū)間;
(3)若$g(x)=-\frac{1+a}{x}$,在[1,e](e=2.71828…)上存在一點x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=-x(x-a)2(x∈R),其中a∈R.
(Ⅰ)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)當a≠0時,求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$的奇偶性為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知x,y∈R+,且滿足x+2y=2xy,那么3x+4y的最小值為5+2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年份2007200820092010201120122013
年份代號t1234567
人均純收入y2.93.33.64.44.85.25.9
若y關于t的線性回歸方程為$\stackrel{∧}{y}$=0.5t+a,則據(jù)此該地區(qū)2017年農(nóng)村居民家庭人均純收入約為( 。
A.6.3千元B.7.5千元C.6.7千元D.7.8千元

查看答案和解析>>

同步練習冊答案