如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使CD=AC,連接AD交⊙O于點(diǎn)E,連接BE與AC交于點(diǎn)F.
(1)判斷BE是否平分∠ABC,并說(shuō)明理由;
(2)若AE=6,BE=8,求EF的長(zhǎng).
考點(diǎn):與圓有關(guān)的比例線段,弦切角
專題:立體幾何
分析:(1)BE平分∠ABC.由已知中邊的相等,可得∠CAD=∠D,∠ABC=∠ACB,再利用同弧所對(duì)的圓周角相等,可得∠CAD=∠D=∠DBE,即有∠ABE+∠EBD=∠CAD+∠D,利用等量減等量差相等,可得∠EBD=∠D=∠ABE,故得證.
(2)由(1)中的所證條件∠ABE=∠FAE,再加上兩個(gè)三角形的公共角,可證△BEA∽△AEF,利用比例線段可求EF.
解答: 解:(1)BE平分∠ABC,理由如下:
證明:∵AC=CD,
∴∠CAD=∠ADC,
∴∠ACB=∠CAD+∠ADC=2∠CAD…(2分)
又∵AB=AC,
∴∠ABC=∠ACB=2∠CAD,
∵∠CAD=∠EBC,
∴∠ABC=2∠EBC,
∴BE平分∠ABC;…(5分)
(2)連接EC,由(1)BE平分∠ABC,
∴E是弧AC的中點(diǎn),
∴AE=EC=6,
又∠EBC=∠CAD=∠ADC,
∴ED=BD=8…(7分)
∵A、B、C、E四點(diǎn)共圓,
∴∠CED=∠ABC=∠ACB=∠AEF
∴△AEF∽△DEC
EF
EC
=
AE
ED

∴EF=
AE•EC
ED
=
9
2
…(10分)
點(diǎn)評(píng):本題考查了圓周角定理,以及等腰三角形的性質(zhì),等邊對(duì)等角,角平分線的判定,還有相似三角形的判定和性質(zhì)等知識(shí).本題解題的關(guān)鍵是正確讀圖,做題時(shí)最好自己作圖以幫助理解題意.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
21
+5)sinθ-7cosθ=2-
21
,求sinθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,多面體ABCDEF中,四邊形ABCD是邊長(zhǎng)為2a的正方形,平面ADEF垂直于平面ABCD,且FA⊥AD,EF∥AD,EF=AF=a.
(1)求證:BD⊥CF;
(2)若P、Q分別為棱BF和DE的中點(diǎn),求證:PQ∥平面ABCD;
(3)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2-1>0},B={x|x>1},則A∩B等于(  )
A、{x|x>1}
B、{x|x>0}
C、{x|x<-1}
D、{x|x>1或x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCED中,PD⊥面ABCD,四邊形ABCD為平行四邊形,∠DAB=60°,AB=PA=2AD=4,
(1)若E為PC中點(diǎn),求證:PA∥平面BDE
(2)求三棱錐D-BCP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:
①經(jīng)過(guò)空間任意一點(diǎn)都可作唯一一個(gè)平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=A,b⊥a,則b⊥α;
③有兩個(gè)側(cè)面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對(duì)棱互相垂直,則第三組對(duì)棱也一定互相垂直;
⑤一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)角的平面角相等或互補(bǔ),
其中正確命題的序號(hào)是
 
(請(qǐng)?zhí)钌纤心阏J(rèn)為正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an+an+1=an2+bn+1(a,b為常數(shù),n∈N*
(1)如果{an}為等差數(shù)列,求a,b的值;
(2)如果{an}為單調(diào)遞增數(shù)列,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列四下命題:
①命題“若x2>1,則x>1”的否命題為“若x2≤1,則x≤1”;
②命題“若α>β,則tanα>tanβ”的逆命題為真命題;
③命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R都有x2+x+1≥0”;
④“x>1”是“x2+x-2>0”的充分不必要條件
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中錯(cuò)誤的是( 。
A、命題“若x2-5x+6=0,則x=2”的逆否命題是“若x≠2,則x2-5x+6≠0”
B、對(duì)命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,則x2+x+1≥0
C、已知命題p和q,若p∨q為假命題,則命題p與q中必一真一假
D、若x、y∈R,則“x=y”是“xy≥(
x+y
2
2”成立的充要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案