如圖,在四棱錐P-ABCED中,PD⊥面ABCD,四邊形ABCD為平行四邊形,∠DAB=60°,AB=PA=2AD=4,
(1)若E為PC中點,求證:PA∥平面BDE
(2)求三棱錐D-BCP的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)連結(jié)AC,BD,交于點O,連結(jié)OE,則OE∥AP,由此能證明PA∥平面BDE.
(2)求出S△BDC=
1
2
×4×2×sin60°
=2
3
,PD=
16-4
=2
3
,由VD-BCP=VP-DBC=
1
3
S△DBC•PD
,能求出三棱錐D-BCP的體積.
解答: (1)證明:連結(jié)AC,BD,交于點O,
∵四邊形ABCD為平行四邊形,∴O是AC中點,
∵E是PC中點,∴OE∥AP,
又AP?平面BDE,OE?平面BDE,
∴PA∥平面BDE.
(2)解:∵S△BDC=
1
2
×4×2×sin60°
=2
3
,
PD=
16-4
=2
3

VD-BCP=VP-DBC=
1
3
S△DBC•PD
=
1
3
×2
3
×2
3
=4.
點評:本題考查直線與平面平行的證明,考查三棱錐的體積的求法,解題時要注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點為P(0,4),焦點為F(0,
15
4
),直線l與拋物線C交于點M、N兩點,且∠MPN=90°
(Ⅰ)求拋物線C的方程;
(Ⅱ)證明直線MN過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長為16cm的線段AB上任取一點M,并以線段AM為一邊作正方形,則此正方形的面積介于25cm2與81cm2之間的概率為( 。
A、
5
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠BAC=45°,AC=a,AB=
2
AC,E,F(xiàn)為邊BC的三等分點,則
AE
AF
=( 。
A、
11
9
a2
B、
5
4
a2
C、
5
3
a2
D、
15
8
a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=(
1
3
 
x-1
的值域為( 。
A、(-∞,0)B、(0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長BC到點D,使CD=AC,連接AD交⊙O于點E,連接BE與AC交于點F.
(1)判斷BE是否平分∠ABC,并說明理由;
(2)若AE=6,BE=8,求EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a(x-b)
(x-b)2+c
(a≠0,b∈R,c>0),g(x)=m[f(x)]2-n(m,n∈R,且mn>0),給出下列命題,①函數(shù)f(x)的圖象關(guān)于點(b,0)成中心對稱;②存在實數(shù)p和q,使得p≤f(x)≤q對于任意實數(shù)x恒成立;③關(guān)于x的方程g(x)=0的解集可能為{-4,-2,0,3}其中正確的是(  )
A、①②B、②③C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點F作圓O:x2+y2=a2的兩條切線,切點分別為A,B,雙曲線的左頂點為C,若∠ACB=120°,求雙曲線的漸近線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1-x-x2)(x+
1
x
6展開式的常數(shù)項為
 

查看答案和解析>>

同步練習冊答案