A. | 有最大值-1,無最小值 | B. | 有最小值-1,無最大值 | ||
C. | 最小值-2,最大值3 | D. | 有最小值-2,無最大值 |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.
解答 解:由z=2x-3y得y=$\frac{2}{3}x-\frac{z}{3}$,
作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):
平移直線y=$\frac{2}{3}x-\frac{z}{3}$,由圖象可知當直線y=$\frac{2}{3}x-\frac{z}{3}$,過點C時,直線y=$\frac{2}{3}x-\frac{z}{3}$截距最小,此時z最大,
由$\left\{\begin{array}{l}{x-2y+1=0}\\{2x-y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即C(1,1),
代入目標函數(shù)z=2x-3y,
得z=2-3=-1.
∴目標函數(shù)z=2x-3y的最大值是-1.
無最小值,
故選:A
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10萬元 | B. | 15萬元 | C. | 20萬元 | D. | 25萬元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{12}{25}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1008×2015 | B. | 1008×2015 | C. | -1008×2017 | D. | 1008×2017 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com