分析 設(shè)等比數(shù)列的公比為q,由求和公式可得$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=1,$\frac{\frac{1}{{a}_{1}}(1-\frac{1}{{q}^{6}})}{1-\frac{1}{q}}$=10,兩式相除化簡可得a12•q5=$\frac{1}{10}$.而a1•a2•a3•a4•a5•a6=(a12•q5)3,代值計算可得.
解答 解:設(shè)等比數(shù)列的公比為q,則q>0,
∵a1+a2+a3+a4+a5+a6=1,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{6}}$=10,故q≠1,
∴$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=1,$\frac{\frac{1}{{a}_{1}}(1-\frac{1}{{q}^{6}})}{1-\frac{1}{q}}$=10,
兩式相除可得$\frac{{{a}_{1}}^{2}(1-{q}^{6})(1-\frac{1}{q})}{(1-q)(1-\frac{1}{{q}^{6}})}$=$\frac{1}{10}$
化簡可得a12•q5=$\frac{1}{10}$.
∴a1•a2•a3•a4•a5•a6=a16•q15=(a12•q5)3=$\frac{1}{1000}$
故答案為:$\frac{1}{1000}$.
點評 本題考查等比數(shù)列的通項公式和求和公式,屬基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 48 | B. | 24 | C. | 36 | D. | 25 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com