A. | 若m⊥α,m∥n,n?β,則α⊥β | B. | 若平面α⊥β,m⊥α,則m⊥β | ||
C. | 若m∥α,α∥β,則m∥β | D. | 若直線m∥n,n?α,則m∥α |
分析 在A中,利用線面垂直、面面垂直的判定定理得α⊥β;在B中,m與β相交、平行或m?β;在C中,m∥β或m?β;在D中,m∥α或m?α.
解答 解:由m,n表示兩條不同的直線,α、β表示兩個不同的平面,知:
在A中,∵m⊥α,m∥n,∴n⊥α,∵n?β,∴α⊥β,故A正確;
在B中,若平面α⊥β,m⊥α,則m與β相交、平行或m?β,故B錯誤;
在C中,若m∥α,α∥β,則m∥β或m?β,故C錯誤;
在D中,若直線m∥n,n?α,則m∥α或m?α,故D錯誤.
故選:A.
點評 本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15種 | B. | 20種 | C. | 48種 | D. | 60種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{24}{25}$ | C. | $\frac{16}{25}$ | D. | $\frac{24}{25}$或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(1,2) | B. | $\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(2,-4) | ||
C. | $\overrightarrow{{e}_{1}}$=(2,3),$\overrightarrow{{e}_{2}}$=(1,$\frac{3}{2}$) | D. | $\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(-2,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com