19.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=-1,an+1=SnSn+1,則S2016=( 。
A.-$\frac{1}{2016}$B.$\frac{1}{2016}$C.-$\frac{1}{2017}$D.$\frac{1}{2017}$

分析 a1=-1,an+1=SnSn+1,可得Sn+1-Sn=SnSn+1,變形為$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,再利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵a1=-1,an+1=SnSn+1
∴Sn+1-Sn=SnSn+1,
∴$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,
∴數(shù)列$\{\frac{1}{{S}_{n}}\}$是等差數(shù)列,首項(xiàng)與公差都為-1.
∴$\frac{1}{{S}_{n}}$=-1-(n-1)=-n,
∴Sn=-$\frac{1}{n}$.
S2016=-$\frac{1}{2016}$.
故選:A.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在某市組織的一次數(shù)學(xué)競(jìng)賽中全體參賽學(xué)生的成績(jī)近似服從正態(tài)分布N(60,100),已知成績(jī)?cè)?0分以上(含90分)的學(xué)生有13人.
(1)求此次參加競(jìng)賽的學(xué)生總數(shù)共有多少人?
(2)若計(jì)劃獎(jiǎng)勵(lì)競(jìng)賽成績(jī)排在前228名的學(xué)生,問受獎(jiǎng)學(xué)生的分?jǐn)?shù)線是多少?
注:參考數(shù)值:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544 P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,若acosB=bsinA,則B=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=xlnx的導(dǎo)數(shù)為y′=( 。
A.xB.1+lnxC.1+xlnxD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在下列結(jié)論中,錯(cuò)用均值不等式作依據(jù)的是( 。
A.x,y,z∈R+,則$\frac{x}{y}$+$\frac{y}{z}$+$\frac{z}{x}$≥3B.$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$≥2
C.若a,b∈R,則$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2D.a∈R+,(1+a)(1+$\frac{1}{a}$)≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z=2i-$\frac{5}{2-i}$,則|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,三內(nèi)角A、B、C的對(duì)邊分別是a、b、c.若4a2=b2+c2+2bc,sin2A=sinB•sinC,則△ABC的形狀的形狀為( 。
A.等邊三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若f(x)=(x+1)6-(x-1)5的展開式為f(x)=a0+a1x+a2x2+…+a5x5+a6x6,則a1+a2+…+a5的值是61(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列關(guān)系表述不正確的是( 。
A.{0,1}⊆NB.∅∈{x∈R|x2+1=0}C.{2,1}={x|x2-3x+2=0}D.a∈{a,b,c}

查看答案和解析>>

同步練習(xí)冊(cè)答案