A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 2 | D. | $\sqrt{2}$ |
分析 根據(jù)余弦定理表示出BD,進(jìn)而根據(jù)雙曲線的定義可得到a1的值,再由AB=2c1,e=$\frac{c}{a}$可表示出e1,同樣的在橢圓中用c2和a2表示出e2,然后利用換元法即可求出e1+e2的取值范圍,即得結(jié)論•
解答 解:在等腰梯形ABCD中,BD2=AD2+AB2-2AD•AB•cos∠DAB
=1+4-2×1×2×(1-x)=1+4x,
由雙曲線的定義可得a1=$\frac{\sqrt{1+4x}-1}{2}$,c1=1,e1=$\frac{2}{\sqrt{1+4x}-1}$,
由橢圓的定義可得a2=$\frac{\sqrt{1+4x}+1}{2}$,c2=x,e2=$\frac{2x}{\sqrt{1+4x}+1}$,
則e1+e2=$\frac{2}{\sqrt{1+4x}-1}$+$\frac{2x}{\sqrt{1+4x}+1}$=$\frac{2}{\sqrt{1+4x}-1}$+$\frac{\sqrt{1+4x}-1}{2}$,
令t=$\sqrt{1+4x}-1$∈(0,$\sqrt{5}$-1),
則e1+e2=$\frac{1}{2}$(t+$\frac{4}{t}$)在(0,$\sqrt{5}$-1)上單調(diào)遞減,
所以e1+e2>$\frac{1}{2}$×($\sqrt{5}$-1+$\frac{4}{\sqrt{5}-1}$)=$\sqrt{5}$,
故選:B.
點(diǎn)評(píng) 本題主要考查橢圓的定義和簡(jiǎn)單性質(zhì)、雙曲線的定義和簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x2-2y2=1 | B. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1 | C. | x2-y2=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com