13.求下列三角函數(shù)值:tan(-$\frac{11}{6}$π)

分析 由條件利用誘導(dǎo)公式求得所給式子的值.

解答 解:tan(-$\frac{11}{6}$π)=tan(-$\frac{11}{6}$π+2π)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題主要考查利用誘導(dǎo)公式進(jìn)行化簡求值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S. 
①當(dāng)0<CQ<$\frac{1}{2}$時(shí),S為四邊形
②截面在底面上投影面積恒為定值$\frac{3}{4}$
③存在某個(gè)位置,使得截面S與平面A1BD垂直
④當(dāng)CQ=$\frac{3}{4}$時(shí),S與C1D1的交點(diǎn)R滿足C1R=$\frac{1}{3}$
其中正確命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(a+x)-ln(a-x)(a>0)
(Ⅰ)曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,求a的值;
(Ⅱ)當(dāng)x≥0時(shí),不等式f(x)≥2x+$\frac{2{x}^{3}}{3}$恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若(x+$\sqrt{x}$)n的展開式中第三項(xiàng)系數(shù)為36,則自然數(shù)n的值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1,以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2,若對(duì)任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)=ax+lnx,x∈(1,e),若f(x)有極值,則函數(shù)f(x)的值域?yàn)椋╝,-1+ln(-$\frac{1}{a}$)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知tanα=2,則sin2α-2cos2α=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,動(dòng)圓x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圓心為P(x,y),求3x-4y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.2B.$\frac{8}{3}$C.4D.$\frac{20}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案