【題目】已知橢圓C:)的離心率為 ,,,的面積為1.

(1)求橢圓C的方程;

(2)斜率為2的直線與橢圓交于兩點(diǎn),求直線的方程;

(3)在軸上是否存在一點(diǎn),使得過(guò)點(diǎn)的任一直線與橢圓若有兩個(gè)交點(diǎn)則都有為定值?若存在,求出點(diǎn)的坐標(biāo)及相應(yīng)的定值.

【答案】(1)(2)(3)見(jiàn)解析

【解析】

1)利用離心率和三角形的面積列方程,由此解得的值,進(jìn)而求得橢圓的方程.2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,根據(jù),斜率乘積為建立方程,解方程求得直線的方程.3)設(shè)出過(guò)點(diǎn)的直線方程,聯(lián)立直線方程和橢圓的方程,消去,化簡(jiǎn)后寫出韋達(dá)定理,代入計(jì)算,根據(jù)為定值,求得點(diǎn)的坐標(biāo)以及相應(yīng)的定值.

(1)由已知,,又,解得

∴橢圓的方程為。

(2)設(shè)直線的方程為,則由可得

∴直線的方程為。

(3)設(shè)、、,當(dāng)直線不為軸時(shí)的方程為

聯(lián)立橢圓方程得:

∴當(dāng)且僅當(dāng)時(shí)(定值)

即在軸上存在點(diǎn)使得為定值5

點(diǎn)E的坐標(biāo)為。經(jīng)檢驗(yàn),

當(dāng)直線軸時(shí)上面求出的點(diǎn)也符合題意。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),曲線的上點(diǎn) 對(duì)應(yīng)的參數(shù),將曲線經(jīng)過(guò)伸縮變換后得到曲線,直線的參數(shù)方程為

(1)說(shuō)明曲線是哪種曲線,并將曲線轉(zhuǎn)化為極坐標(biāo)方程;

(2)求曲線上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,記圓心的軌跡為.

1)求軌跡的方程;

2)設(shè)點(diǎn)上運(yùn)動(dòng),關(guān)于原點(diǎn)對(duì)稱,且,當(dāng)的面積最小時(shí), 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)對(duì)任意的mnR都有f(mn)f(m)f(n)1,并且x0時(shí),恒有f(x)<1.

(1)試判斷f(x)R上的單調(diào)性,并加以證明;

(2)若f(3)4,解不等式f(a2a5)<2

(3)若關(guān)于的不等式上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn)直線.

(1)求與圓相切,且與直線垂直的直線方程;

(2)在直線為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo).

【答案】(1);(2)答案見(jiàn)解析.

【解析】試題分析:

(1)設(shè)所求直線方程為,利用圓心到直線的距離等于半徑可得關(guān)于b的方程,解方程可得,則所求直線方程為

(2)方法1:假設(shè)存在這樣的點(diǎn),由題意可得,,然后證明為常數(shù)為即可.

方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,據(jù)此得到關(guān)于的方程組,求解方程組可得存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).

試題解析:

(1)設(shè)所求直線方程為,即

∵直線與圓相切,∴,得

∴所求直線方程為

(2)方法1:假設(shè)存在這樣的點(diǎn)

當(dāng)為圓軸左交點(diǎn)時(shí),;

當(dāng)為圓軸右交點(diǎn)時(shí),,

依題意,,解得,(舍去),或.

下面證明點(diǎn)對(duì)于圓上任一點(diǎn),都有為一常數(shù).

設(shè),則,

從而為常數(shù).

方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則

,將代入得,

,即

對(duì)恒成立,

,解得(舍去),

所以存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).

點(diǎn)睛:求定值問(wèn)題常見(jiàn)的方法有兩種:

(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān).

(2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值.

型】解答
結(jié)束】
22

【題目】已知函數(shù)的導(dǎo)函數(shù)為其中為常數(shù).

(1)當(dāng)時(shí),的最大值,并推斷方程是否有實(shí)數(shù)解

(2)若在區(qū)間上的最大值為-3,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,滿足,且

(1)的通項(xiàng)公式;

(2),,成等差數(shù)列,求證:,,成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)(點(diǎn)均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2),當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案