不等式
x+1
x-2
<0的解集為
 
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:將原不等式等價(jià)轉(zhuǎn)化為不等式組
x+1>0
x-2<0
①或
x+1<0
x-2>0
②,分別解不等式組①②即可.
解答: 解:∵
x+1
x-2
<0,
x+1>0
x-2<0
①或
x+1<0
x-2>0
②,
解①得:-1<x<2;
解②得:x∈∅;
∴不等式
x+1
x-2
<0的解集為{x|-1<x<2}.
故答案為:{x|-1<x<2}.
點(diǎn)評(píng):本題考查分式不等式的解法,將原不等式等價(jià)轉(zhuǎn)化為不等式組
x+1>0
x-2<0
①或
x+1<0
x-2>0
②是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算機(jī)是將信息轉(zhuǎn)換成二進(jìn)制數(shù)進(jìn)行處理的,二進(jìn)制即“逢2進(jìn)1”,如(1101)2表示二進(jìn)制數(shù),將它轉(zhuǎn)換成為十進(jìn)制形式是1×23+1×22+0×21+1×20=13,那么將二進(jìn)制數(shù)(
111…1
2002
2,轉(zhuǎn)換成十進(jìn)制形式是( 。
A、22002-2
B、22002-1
C、22001-2
D、22001-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
4
5
,左、右焦點(diǎn)分別為F1和F2,橢圓C與x軸的兩交點(diǎn)分別為A、B,點(diǎn)P是橢圓上一點(diǎn)(不與點(diǎn)A、B重合),∠F1PF2=2β.
(1)若β=45°,三角形F1PF2的面積為36,求橢圓C的方程;
(2)在條件(1)下,過點(diǎn)Q(0,10)的直線l與橢圓C交于M,N兩點(diǎn),且|MN|=
90
2
17
,求l的方程及tan∠AMB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的單調(diào)區(qū)間:
(1)y=x+
9
x

(2)f(x)=x+
4
x
;
(3)y=|x|;
(4)y=x2-2|x|+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)用分析法證明:當(dāng)一個(gè)圓和一個(gè)正方形的周長(zhǎng)相等時(shí),圓的面積比正方形的面積大.
(2)用反證法已知實(shí)數(shù)a,b,c,d滿足a+b=c+d=1,ab+cd>1,求證a,b,c,d中至少有一個(gè)是負(fù)數(shù).(提示:ac≤
ac
a+c
2
,bd≤
bd
b+c
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),當(dāng)x∈[-1,1]時(shí),f(x)=x2-x,且對(duì)?x滿足f(x-1)=2f(x),則函數(shù)f(x)在區(qū)間[5,7]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
1-x
1+x
(x≠-1),求f(0),f(1),f(1-a)(a≠2),f[f(2)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用判別式求下列函數(shù)的值域:
(1)y=(x2-x+3)÷(x2-x+1);
(2)y=8÷(x2-4x+5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin|x|的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案