分析 (1)由已知式子和兩角和的正切公式變形可得tanB,可得B值;
(2)由正弦定理和已知可得c=2a,再由余弦定理可得a值,可得c值.
解答 解:(1)∵在△ABC中,$\sqrt{3}tanC-1=\frac{tanB+tanC}{tanA}$,
∴tanB+tanC=tanA($\sqrt{3}$tanC-1),
∴tanB=$\sqrt{3}$tanAtanC-(tanA+tanC)
=$\sqrt{3}$tanAtanC-tan(A+C)(1-tanAtanC),
∴tanB=$\sqrt{3}$tanAtanC+tanB(1-tanAtanC),
∴tanB-tanB(1-tanAtanC)=$\sqrt{3}$tanAtanC,
∴tanBtanAtanC=$\sqrt{3}$tanAtanC,
∴tanB=$\sqrt{3}$,∴B=$\frac{π}{3}$,
(2)∵sinC=2sinA,∴由正弦定理得c=2a,
由余弦定理b2=a2+c2-2accosB,
代入數(shù)據(jù)可得$9={a^2}+4{a^2}-2a•2acos\frac{π}{3}$,
解得$a=\sqrt{3}$,∴$c=2a=2\sqrt{3}$.
點(diǎn)評(píng) 本題考查解三角形,涉及正余弦定理的綜合應(yīng)用以及兩角和與差的正切函數(shù)的變形應(yīng)用,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有數(shù)字 | 無(wú)數(shù)字 | 合計(jì) | |
中國(guó)人 | |||
外國(guó)人 | |||
合計(jì) |
P(K2=k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com