5.袋中有1--4號(hào)4個(gè)均勻的球,從中取出一個(gè)放回再取,設(shè)第一次所取球號(hào)數(shù)與第二次所取球號(hào)數(shù)商為X,求X的分布列.

分析 從袋中取出一個(gè)放回再取一球,用列舉法求出基本事件數(shù);
從而得出第一次所取球號(hào)數(shù)與第二次所取球號(hào)數(shù)的商可能取值X,計(jì)算對(duì)應(yīng)的概率即可.

解答 解:根據(jù)題意,從袋中取出一個(gè)放回再取一球,有
11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44共16種;
設(shè)第一次所取球號(hào)數(shù)與第二次所取球號(hào)數(shù)商為X,
則X的可能取值為$\frac{1}{4}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{2}$,$\frac{3}{4}$,1,$\frac{3}{2}$,$\frac{4}{3}$,2,3,4;
∴P($\frac{1}{4}$)=$\frac{1}{16}$,
P($\frac{1}{3}$)=$\frac{1}{16}$,
P($\frac{1}{2}$)=$\frac{1}{8}$,
P($\frac{2}{3}$)=$\frac{1}{16}$,
P($\frac{3}{4}$)=$\frac{1}{16}$,
P(1)=$\frac{1}{4}$,
P($\frac{3}{2}$)=$\frac{1}{16}$,
P($\frac{4}{3}$)=$\frac{1}{16}$,
P(2)=$\frac{1}{8}$,
P(3)=$\frac{1}{16}$,
P(4)=$\frac{1}{16}$;
∴X的分布列為

X$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{2}$ $\frac{2}{3}$$\frac{3}{4}$1$\frac{3}{2}$$\frac{4}{3}$234
 P $\frac{1}{16}$ 
$\frac{1}{16}$
 $\frac{1}{8}$$\frac{1}{16}$ 
$\frac{1}{16}$
 
$\frac{1}{4}$
$\frac{1}{16}$$\frac{1}{16}$  
$\frac{1}{8}$
 $\frac{1}{16}$
$\frac{1}{16}$

點(diǎn)評(píng) 本題考查了用列舉法計(jì)算基本事件的概率以及離散型隨機(jī)事件的分布列的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)為R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=3x-a,則f(-2)=(  )
A.-10B.-8C.10D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A,B,C三點(diǎn)共線,{an}為等差數(shù)列,且$\overrightarrow{OC}$=a2$\overrightarrow{OA}$$+{a}_{12}\overrightarrow{OB}$,則a3+a15-a11的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.用五點(diǎn)法作y=sinx-1,x∈[0,2π]的圖象,并求出函數(shù)的周期和最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.sin113°cos22°+sin203°sin158°的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=$\frac{sinx}{x}$,并且$\frac{π}{3}$<a<b<$\frac{2π}{3}$,則下列各結(jié)論中正確的是( 。
A.f(a)<f($\sqrt{ab}$)<f($\frac{a+b}{2}$)B.f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(b)C.f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(a)D.f(b)<f($\frac{a+b}{2}$)<f($\sqrt{ab}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4B.21+$\sqrt{3}$C.3$\sqrt{3}$+12D.$\frac{{3\sqrt{3}}}{2}$+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)θ∈(${-\frac{π}{2}$,$\frac{π}{2}}$),則關(guān)于θ的方程2${\;}^{\frac{-1}{cosθ}}$=tanθ的解的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖5,已知△BCD中,∠BCD=90°,BC=CD=1,AB=$\sqrt{6}$,AB⊥平面BCD,E、F分別是AC、AD的中點(diǎn).
(1)求證:平面BEF⊥平面ABC;
(2)設(shè)平面BEF∩平面BCD=l,求證CD∥l;
(3)求四棱錐B-CDFE的體積V.

查看答案和解析>>

同步練習(xí)冊(cè)答案