6.如圖所示,直四棱柱ABCD-A1B1C1D1內(nèi)接于半徑為$\sqrt{3}$的半球O,四邊形ABCD為正方形,則該四棱柱的體積最大時(shí),AB的長是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 設(shè)AB=a,BB1=h,求出a2=6-2h2,故正四棱柱的體積是V=a2h=6h-2h3,利用導(dǎo)數(shù),得到該正四棱柱體積的最大值,即可得出結(jié)論.

解答 解:設(shè)AB=a,BB1=h,
則OB=$\frac{\sqrt{2}}{2}$a,連接OB1,OB,則OB2+BB12=OB12=3,
∴$\frac{{a}^{2}}{2}+{h}^{2}$=3,
∴a2=6-2h2,
故正四棱柱的體積是V=a2h=6h-2h3,
∴V′=6-6h2
當(dāng)0<h<1時(shí),V′>0,1<h<$\sqrt{3}$時(shí),V′<0,
∴h=1時(shí),該四棱柱的體積最大,此時(shí)AB=2.
故選:D.

點(diǎn)評 本題考查棱柱、棱錐、棱臺(tái)的體積,借助導(dǎo)數(shù)研究出四棱柱的體積最大,是解題的關(guān)鍵,根據(jù)題意建立適當(dāng)?shù)哪P褪墙鉀Q一個(gè)實(shí)際問題的關(guān)鍵,學(xué)習(xí)時(shí)要注意積累此類題中模型的建立方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在正三棱柱ABC-A1B1C1中,若AB=$\sqrt{2}$BB1,則AB1與C1B所成的角的余弦值0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知隨機(jī)變量ξ服從正態(tài)分布N(1,4),若p(ξ>4)=0.1,則p(-2≤ξ≤4)=0.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC為等邊三角形,AE=1,BD=2,CD與平面ABCDE所成角的正弦值為$\frac{{\sqrt{6}}}{4}$.
(1)若F是線段CD的中點(diǎn),證明:EF⊥平面DBC;
(2)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知棱長等于$2\sqrt{3}$的正方體ABCD-A1B1C1D1,它的外接球的球心為O,點(diǎn)E是AB的中點(diǎn),則過點(diǎn)E的平面截球O的截面面積的最小值為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax-$\frac{1}{2}$x2-bln(x+1)(a>0),g(x)=ex-x-1,曲線y=f(x)與y=g(x)在原點(diǎn)處有公共的切線.
(1)若x=0為f(x)的極大值點(diǎn),求f(x)的單調(diào)區(qū)間(用a表示);
(2)若?x≥0,g(x)≥f(x)+$\frac{1}{2}$x2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)定點(diǎn)A(3,1),B是x軸上的動(dòng)點(diǎn),C是直線y=x上的動(dòng)點(diǎn),則△ABC周長的最小值是( 。
A.3$\sqrt{5}$B.$\sqrt{6}$C.2$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以A(-2,-2),B(-3,1),C(3,5),D(7,-7)為頂點(diǎn)的四邊形是(  )
A.正方形B.矩形C.平行四邊形D.梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,PA=BC=AC,E為PC的中點(diǎn),點(diǎn)F在PB上,且PF=$\frac{1}{3}$PB.
(1)求證:平面AEF⊥平面PBC;
(2)求直線AB和平面AEF所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案