18.函數(shù)f(x)=sin(ωx+φ)(ω>0,φ∈[0,2π])的部分圖象如圖所示,則f(2013)=-1.

分析 由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)f(x)的解析式,從而求得f(2013)的值.

解答 解:結(jié)合函數(shù)f(x)=sin(ωx+φ)(ω>0,φ∈[0,2π])的部分圖象,
可得$\frac{1}{4}•\frac{2π}{ω}$=3-1,ω=$\frac{π}{4}$,
再根據(jù)五點法作圖可得$\frac{π}{4}$•1+φ=$\frac{π}{2}$,求得φ=$\frac{π}{4}$,故f(x)=sin($\frac{π}{4}$x+$\frac{π}{4}$),
f(2013)=sin($\frac{2013π}{4}$+$\frac{π}{4}$)=sin(503π+$\frac{π}{2}$)=-1,
故答案為:-1.

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)f(x)的解析式,從而求得f(2013)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線y-4=-$\sqrt{3}$(x+3)的傾斜角和所過的定點分別是( 。
A.-60°,(-3,4)B.120°,(-3,4)C.150°,(-3,4)D.120°,(3,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0)在x=2015處取得最小值,則( 。
A.f(x-2015)一定是奇函數(shù)B.f(x-2015)一定是偶函數(shù)
C.f(x+2015)一定是奇函數(shù)D.f(x+2015)一定是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列敘述正確的是( 。
A.數(shù)列1,3,5,7與7,5,3,1是相同的數(shù)列
B.數(shù)列0,1,2,3,…可以表示為{n}
C.數(shù)列0,1,0,1,…是常數(shù)列
D.數(shù)列{$\frac{n}{n+1}$}是遞增數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等比數(shù)列{an}的各項均為正數(shù),且a1>1,前n項之積為Tn,設(shè)T10=T20,
(1)當(dāng)n為何值時,Tn最大?
(2)是否存在自然數(shù)m,使得Tm=1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列函數(shù)的最大值及取得最大值時x的集合:
(1)y=1-3sinx;
(2)y=$\frac{2}{3}$cosx-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知tna2α=-$\frac{4}{3}$,α是第一象限角,則tanα等于(  )
A.1B.3C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高二上學(xué)期第一次月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

平面截球的球面所得圓的半徑為,球心到平面的距離為,則球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\sqrt{3}$sinωx-2sin2$\frac{ωx}{2}$+m(ω>0)的最小正周期為3π,且當(dāng)x∈[$\frac{π}{4}$,π]時,函數(shù)f(x)的最大值為1.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

同步練習(xí)冊答案