春暖花開(kāi)季節(jié),某校舉行了踢毽子比賽,將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖如圖,已知圖中從左到右前三個(gè)小組的頻率分別是0.1,0.3,0.4,第一小組的頻數(shù)為5.
(1)求第四小組的頻率;
(2)參加這次比賽的學(xué)生人數(shù)是多少?
(3)在這次比賽中,學(xué)生踢毽子的中位數(shù)落在第幾小組內(nèi)?
考點(diǎn):眾數(shù)、中位數(shù)、平均數(shù),頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(1)1減其余各小組的頻率之和,得到第四小組的頻率
(2)設(shè)參加這次測(cè)試的學(xué)生人數(shù)為
第一小組頻數(shù)
第一小組頻率

(3)由已知條件分別求出第一、第二、第三、第四小組的頻數(shù),由此能求出學(xué)生踢毽子次數(shù)的中位數(shù)落在第幾小組內(nèi).
解答: 解:(1)第四小組的頻率=1-(0.1+0.3+0.4)=0.2.(4分)
(2)設(shè)參加這次測(cè)試的學(xué)生人數(shù)是n,則有
n=
第一小組頻數(shù)
第一小組頻率
=5÷0.1=50(人).(8分)
(3)∵0.1×50=5,0.3×50=15,
0.4×50=20,0.2×50=10,
即第一、第二、第三、第四小組的頻數(shù)分別為5、15、20、10,
所以學(xué)生踢毽子次數(shù)的中位數(shù)落在第三小組內(nèi).(12分)
點(diǎn)評(píng):本題考查頻率分布直方圖的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,要注意識(shí)圖能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三個(gè)正方形并排放置,則∠BAE+∠CAD=( 。
A、
π
3
B、
π
4
C、75°
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)A(6,1)與圓C:x2+y2-8x+6y+21=0相切,
(1)求該圓的圓心坐標(biāo)及半徑長(zhǎng);
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某花木公司為了調(diào)查某種樹(shù)苗的生長(zhǎng)情況,抽取了一個(gè)容量為100的樣本,測(cè)得樹(shù)苗的高度(cm)數(shù)據(jù)的分組及相應(yīng)頻數(shù)如下:
[107,109)3株;[109,111)9株;[111,113)13株;[113,115)16株;[115,117)26株;
[117,119)20株;[119,121)7株;[121,123)4株;[123,125)2株.
(1)列出頻率分布表.
(2)畫(huà)出頻率分布直方圖.
(3)據(jù)上述圖表,估計(jì)數(shù)據(jù)落在[109,121)范圍內(nèi)的可能性是百分之幾?
(4)求出數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a為實(shí)常數(shù),函數(shù)f(x)=lnx-ax+1.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1<x2).
   (ⅰ)求實(shí)數(shù)a的取值范圍;
   (ⅱ)求證:
1
e
<x1<1,且x1+x2>2.(注:e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,以O(shè)為圓心的圓與直線x-
3
y=4
相切.
(1)求圓O的方程;
(2)已知圓C:x2+y2+2x-4y+3=0,判斷它與圓O的位置關(guān)系,若相切求切線方程;若相交求相交弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2a4a6a8=120,且
1
a4a6a8
+
1
a2a6a8
+
1
a2a4a8
+
1
a2a4a6
=
7
60
,則S9的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax2+2,若f′(1)=4,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案